Analysis of High-Performance Clock Networks with RLC and Transmission Line Effects

Walter Condley Xuchu Hu Matthew Guthaus

University of California, Santa Cruz

1

Outline

• Problems with present models

• Review of common models

Clock Synthesis

Results

Problems with Present Models

- The most prevalent model is the Elmore delay model, a first order RC delay.
 - At high frequencies the inductance of the lines plays a greater role.
- Many better models have been proposed but have only be used in analysis on uniform structures such as H-Trees
 - Modern design does not use such simplified design.

Problems with Present Models

 High-frequency designs now use clock grids which require substantial routing resources and large drivers consuming a great deal of power.

 In exchange for these design losses, skew and jitter are amortized across the chip and manufacturing error is more tolerable

Review of common models

- Lumped C model
 - For short local wires the capacitance of the wire is the most dominating factor, and it is reasonable to assume that the resistance and inductance are negligible
- RC Model (Elmore model)

$$Delay = RC = (R_{unit} * L/W)(C_{unit} * L * W)$$
$$= R_{unit} * C_{unit} * L^{2}$$

- Overestimates downstream capacitance
- This error grows the larger the number of steps from the root

Review of common models

- RLC Model
 - On-chip inductance has long been ignored based on it's perceived insignificance due to the short wire lengths on IC.
 - However, as the frequencies have increased this becomes increasingly important particularly on the longer clock-lines.

Review of common models

- Transmission Line Model
 - The most accurate of the models.
 - Considers the knee frequency, defined as $0.5/t_{rise}$
 - Propagation velocity changes based on the frequency component of the signal
 - A 7.5GHz signal could easily have relevant spectral components exceeding 37.5GHz

Clock Synthesis

- Clock Trees
 - Binary topology using nearest-neighbor clustering with a weighted combination of distance and insertion delay
 - Uses deferred merge embedding optimization
 - A minimal number of buffers are then inserted to preserve the slew constraints

Clock Synthesis

- Clock Grids
 - A top-level tree is used to drive a lower-level grid
 - Clock sinks are directly connected to the nearest wires
 - A quick buffer-insertion method is used to verify slew, and the grid is left over-buffered like many industrial designs
 - After being buffered wire removal is called to remove the wires that least affect the performance of the grid.

Setup

• We use the clock synthesis tool to generate a tree based upon the RC models

 At completion we switch the output to RLC or transmission line models without changing the physical structure

Measurement

- Two main types of measurement are taken
 - Skew
 - This is the primary metric of concern for this work
 - We measure worst skew amount all pairs of sinks at 50% of Vdd

$$Skew = \frac{max(t_i)}{min(t_i)}$$

$$i \in Sinks \ i \in Sinks$$

- Jitter
 - The only source of jitter considered is that of reflections
 - We measure periodic jitter over 10 cycles.

•
$$J_i^2 = Var(t_{i,k+1} - t_{i,k})$$

RLC Skew Results

Percent Clock Period

Skew Results

13

Jitter Results

Summary

- Transmission Lines
 - Error as large as 45% of the clock period
- Jitter
 - As much as 5.5% of the clock period different from the RC model
- Slew
 - As slew was a primary constraint, this was kept uniform
- Grids
 - We note an error up to 80% of the clock period on grids

References

- [1] A. Kahng and C. Tsao, "Planar-DME: Improved Planar Zero-Skew Clock Routing With Minimum Pathlength Delay,,"" *Proc. European Design Automation Conference*, Citeseer, 1994, p. 440445.
- [2] G. Chen and E. Friedman, "An RLC interconnect model based on fourier analysis," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 24, 2005, pp. 170-183.

Questions?