Analysis of High-Performance Clock Networks with RLC and Transmission Line Effects

Walter Condley Xuchu Hu Matthew Guthaus

University of California, Santa Cruz

Outline

Problems with present models

Review of common models

Clock Synthesis

Results

Problems with Present Models

- The most prevalent model is the Elmore delay model, a first order RC delay.
	- At high frequencies the inductance of the lines plays a greater role.
- Many better models have been proposed but have only be used in analysis on uniform structures such as H-Trees
	- Modern design does not use such simplified design.

Problems with Present Models

• High-frequency designs now use clock grids which require substantial routing resources and large drivers consuming a great deal of power.

• In exchange for these design losses, skew and jitter are amortized across the chip and manufacturing error is more tolerable

Review of common models

- Lumped C model
	- For short local wires the capacitance of the wire is the most dominating factor, and it is reasonable to assume that the resistance and inductance are negligible
- RC Model (Elmore model)

$$
Delay = RC = (R_{unit} * L/W)(C_{unit} * L*W)
$$

$$
= R_{unit} * C_{unit} * L^{2}
$$

- Overestimates downstream capacitance
- This error grows the larger the number of steps from the root

Review of common models

- RLC Model
	- On-chip inductance has long been ignored based on it's perceived insignificance due to the short wire lengths on IC.
	- However, as the frequencies have increased this becomes increasingly important particularly on the longer clock-lines.

Review of common models

- Transmission Line Model
	- The most accurate of the models.
	- Considers the knee frequency, defined as 0.5/t_{rise}
	- Propagation velocity changes based on the frequency component of the signal
	- A 7.5GHz signal could easily have relevant spectral components exceeding 37.5GHz

Clock Synthesis

- Clock Trees
	- Binary topology using nearest-neighbor clustering with a weighted combination of distance and insertion delay
	- Uses deferred merge embedding optimization
	- A minimal number of buffers are then inserted to preserve the slew constraints

Clock Synthesis

- Clock Grids
	- A top-level tree is used to drive a lower-level grid
	- Clock sinks are directly connected to the nearest wires
	- A quick buffer-insertion method is used to verify slew, and the grid is left over-buffered like many industrial designs
	- After being buffered wire removal is called to remove the wires that least affect the performance of the grid.

Setup

• We use the clock synthesis tool to generate a tree based upon the RC models

 At completion we switch the output to RLC or transmission line models without changing the physical structure

Measurement

- Two main types of measurement are taken
	- Skew
		- This is the primary metric of concern for this work
		- We measure worst skew amount all pairs of sinks at 50% of Vdd

•
$$
Skew = \frac{max(t_i)}{min(t_i)}
$$

$$
kew = \frac{1}{i \in Sinks} - \frac{1}{i \in Sinks}
$$

- Jitter
	- The only source of jitter considered is that of reflections
	- We measure periodic jitter over 10 cycles.

•
$$
J_i^2 = Var(t_{i,k+1} - t_{i,k})
$$

RLC Skew Results

Percent Clock Period 2008 12

Skew Results

13

Jitter Results

Summary

- Transmission Lines
	- Error as large as 45% of the clock period
- Jitter
	- As much as 5.5% of the clock period different from the RC model
- Slew
	- As slew was a primary constraint, this was kept uniform
- **Grids**
	- We note an error up to 80% of the clock period on grids

References

- [1] A. Kahng and C. Tsao, "Planar-DME: Improved Planar Zero-Skew Clock Routing With Minimum Pathlength Delay,,"" *Proc. European Design Automation Conference*, Citeseer, 1994, p. 440445.
- [2] G. Chen and E. Friedman, "An RLC interconnect model based on fourier analysis," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 24, 2005, pp. 170-183.

Questions?