Worst-Case Performance Prediction Under Supply Voltage and Temperature Noise

Chung-Kuan Cheng[†], **Andrew B. Kahng^{†‡}**, Kambiz Samadi[‡] and Amirali Shayan[†]

June 13, 2010

CSE[†] and ECE[‡] Departments University of California, San Diego

Motivation

 Power distribution network (PDN) is major consumer (30+%) of interconnect resources

→ seek efficient early-stage PDN optimization

- Correct optimization of PDN requires understanding the implications on delay
- Our proposed models attempt to accurately and efficiently provide such implications

Existing Models

- Gate delay models under supply voltage noise can be classified as (1) static or (2) dynamic
- Replace supply voltage noise with equivalent P/G voltage (cf. Hashimoto et al. ICCAD'04)
 - Fails to capture the dynamic behavior of the noise waveform (time-invariant)
- Probabilistic approaches to estimate supply voltage noise bound given a performance criteria (cf. *Martorell et al. CDTiSNE'07*)
 - Assumes equal supply voltage across all the gates in a path
- Discretize the noise waveform → assign an equivalent DC voltage values for each interval (cf. Weng et al. ICCD'08)
- Recently, *Okumera et al.* proposed a dynamic gate delay model (cf. *ASPDAC'10*)
 - Does not account for simultaneous change in all the relevant cell and noise parameters

Implementation Flow and Tools

- Configurable SPICE netlist
- Use range of supply voltage noise, temperature and cell parameters to capture design space
- Use nonparametric regression modeling to capture impact of supply voltage noise and temperature on cell delay
- From basic gate delay model, compute delay of arbitrary k-stage critical path
- → Accurately detect worstcase supply noise waveform / performance

Scope of Study

- Parameterizable SPICE netlist for a given cell
- Generic critical path with arbitrary number of stages
- 65nm Foundry SPICE (typical corner, NVT devices)
- Tool Chain: Synopsys HSPICE and Salford MARS 3.0
- Experimental axes:
 - Technology node: {65nm}
 - Cell parameters: {slew_{in}, output_{load}, cell_{size}}
 - input slew, output load, cell size
 - Supply noise parameters: {amp_{noise}, slew_{noise}, offset_{noise}}
 - noise amplitude, noise slew, noise offset
 - Temperature

Modeling Problem

- Accurately predict y given vector of parameters \vec{x}
- Difficulties: (1) which variables x to use, and (2) how different variables combine to generate y

 $y = f(\vec{x}) + noise$

- Parametric regression: requires a functional form
- Nonparametric regression: learns about the best model from the data itself
 - → Decouple the modeling task from understanding the complex relationships between dynamic supply voltage noise / temperature and cell delay
- This work: exploration of nonparametric regression to model delay and output slew of a given cell

Multivariate Adaptive Regression Splines (MARS)

- MARS is a nonparametric regression technique
- MARS builds models of form:

$$\hat{\mathbf{f}}(\vec{\mathbf{x}}) = \mathbf{C}_0 + \sum_{i=1}^{\kappa} \mathbf{C}_i \mathbf{B}_i(\vec{\mathbf{x}})$$

- Each basis function $B_i(\vec{x})$ can be:
 - a constant
 - a "hinge" function max(0, c x) or max(0, c x)
 - a product of two or more hinge functions
- Two modeling steps:
 - (1) forward pass: obtains model with defined maximum number of terms
 - (2) backward pass: improves generality by avoiding an overfit model

Example MARS Output Models

Delay Model

$$\begin{split} \mathsf{B}_1 &= \max(0, \textit{load}_{out} - 0.021); \ \mathsf{B}_2 &= \max(0, 0.021 - \textit{load}_{out}); \ \dots \\ \mathsf{B}_{98} &= \max(0, \textit{offest}_{noise} + 2.4e\text{-}12) \times \mathsf{B}_{92}; \\ \mathsf{B}_{100} &= \max(0, \textit{offset}_{noise} + 2.4e\text{-}12) \times \mathsf{B}_{37}; \end{split}$$

 $d_{cell} = 1.02e-11 + 7.35e-10 \times B_1 - 5.89e-10 \times B_2 - 2.17e-11 \times B_3 + ...$ - 1.71e-7×B₉₆+2.43e-7×B₉₈ - 3.03e-8×B₁₀₀

Output Slew Model

$$\begin{split} &\mathsf{B}_1 = \max(0, \textit{load}_{out} - 0.0009); \, \mathsf{B}_2 = \max(0, \textit{cell}_{size} - 4) \times \mathsf{B}_1; \, \dots \\ &\mathsf{B}_{99} = \max(0, \, 0.05 - \textit{slew}_{noise}) \times \mathsf{B}_{55}; \\ &\mathsf{B}_{100} = \max(0, \textit{offset}_{noise} + 0.15) \times \mathsf{B}_{94}; \end{split}$$

 $slew_{out} = 1.23e-11 + 1.53e-10 \times B_1 - 2.05e-10 \times B_2 + 2.05e-9 \times B_3 + ... - 1.08e-8 \times B_{98} - 4.33e-9 \times B_{99} - 7.42e-9 \times B_{100}$

- Closed-form expressions with respect to cell and supply voltage noise parameters
- Suitable to drive early-stage PDN design exploration

Accurate Cell Delay Modeling

- Noise characteristics need to be considered
- Noise slew affects cell delay only when it is comparable to that of input slew
- Noise offset affects the impact of supply noise on cell delay
- → CMOS gate delay modeling is a nontrivial task with nonobvious implications

Worst-Case Performance Model

- GOAL: find set of seven parameters (7-tuple) where the path delay is maximum
- Mapping from set of all 7-tuples to cell delay and output slew values
- In a single stage pick the 7-tuple with maximum delay
- In a multi-stage path:
 - Output slew of the previous stage becomes the input slew to the current stage
 - Noise offset must be adjusted according to delay and output slew values of the previous stages

 Worst-case configuration is always an element of |slew_{in}|×|load_{out}|×|cell_{size}|×|amp_{noise}|×|slew_{noise}|×|offset_{noise}|×|temp| (10/12)

Experimental Setup and Results

Scripting to generate SPICE decks for 30720 configurations

Parameter	Values
slew _{in}	{0.00056, 0.00112, 0.0392, 0.1728, 0.56, 0.7088}ns
loadout	{0.0009, 0.0049, 0.0208, 0.0842}pF
cell _{size}	INV: {1, 4, 8, 20} 2-input NAND: {1, 2, 4, 8}
amp _{noise}	{0, 0.054, 0.144, 0.27}V
slew _{noise}	{0.01, 0.04, 0.07, 0.09}ns
offset _{noise}	{-0.15, -0.05, 0, 0.05, 0.15}ns
temp	{-40, 25, 80, 125}°C

- Three different paths with different number of stages: (1) only inverter, (2) only 2-input NAND, and (3) a mix of inverter and 2input NAND
- Models are insensitive to random selection of training data set
- Cell delay model within 6% of SPICE (on average)
- Our multi-stage path delay within 4.3% of SPICE simulation
- Worst-case predictions are in top 3 (out of 30720 configurations)
 W.r.t. list

Extensibility of Approach

- Have used same methodology to develop models for interconnect wirelength (WL) and fanout (FO)
- Wirelength model
 - On average, within 3.4% of layout data
 - 91% reduction of avg error vs. existing models (cf. Christie et al. '00)
- Fanout model
 - On average, within 0.8% of the layout data
 - 96% reduction of avg error vs. existing models (cf. Zarkesh-Ha et al. '00)

Conclusions

- Generally applicable gate delay modeling methodology
 - Leverage supply voltage and temperature variations
- Achieved accurate cell delay and output slew models
- Validated our models against 30720 configurations
- Proposed cell delay model is within 6% of SPICE (on average)
- Proposed path delay model is within 4.3% of SPICE (on average)
- Proposed models accurately detect worst-case supply noise waveform / performance

