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Motivation
• Power distribution network (PDN) is major consumer (30+%) of 

interconnect resources
 seek efficient early-stage PDN optimization

• Correct optimization of PDN requires understanding the 
implications on delay

• Our proposed models attempt to accurately and efficiently 
provide such implications
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Existing Models
• Gate delay models under supply voltage noise can be classified 

as (1) static or (2) dynamic
• Replace supply voltage noise with equivalent P/G voltage (cf. 
Hashimoto et al. ICCAD’04)

• Fails to capture the dynamic behavior of the noise waveform (time-invariant)

• Probabilistic approaches to estimate supply voltage noise bound 
given a performance criteria (cf. Martorell et al. CDTiSNE’07)

• Assumes equal supply voltage across all the gates in a path

• Discretize the noise waveform  assign an equivalent DC 
voltage values for each interval (cf. Weng et al. ICCD’08)

• Recently, Okumera et al. proposed a dynamic gate delay model 
(cf. ASPDAC’10)

• Does not account for simultaneous change in all the relevant cell and noise 
parameters
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Implementation Flow and Tools
• Configurable SPICE netlist
• Use range of supply voltage 

noise , temperature and cell 
parameters to capture design 
space

• Use nonparametric regression
modeling to capture impact of 
supply voltage noise and 
temperature on cell delay

• From basic gate delay model, 
compute delay of arbitrary       
k-stage critical path

 Accurately detect worst-
case supply noise 
waveform / performance
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Scope of Study
• Parameterizable SPICE netlist for a given cell
• Generic critical path with arbitrary number of stages
• 65nm Foundry SPICE (typical corner, NVT devices)
• Tool Chain: Synopsys HSPICE and Salford MARS 3.0
• Experimental axes:

• Technology node: {65nm}
• Cell parameters: {slewin, outputload, cellsize}

• input slew, output load, cell size
• Supply noise parameters:  {ampnoise, slewnoise, offsetnoise}  

• noise amplitude, noise slew, noise offset
• Temperature
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noise amplitude
noise slew
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Modeling Problem
• Accurately predict y given vector of parameters x
• Difficulties: (1) which variables x to use, and (2) how different 

variables combine to generate y

• Parametric regression: requires a functional form
• Nonparametric regression: learns about the best model from 

the data itself
 Decouple the modeling task from understanding the 
complex relationships between dynamic supply voltage noise / 
temperature and cell delay 

• This work: exploration of nonparametric regression to model 
delay and output slew of a given cell
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Multivariate Adaptive Regression Splines (MARS)
• MARS is a nonparametric regression technique
• MARS builds models of form:

• Each basis function Bi(x) can be:
• a constant
• a “hinge” function  max(0, c – x) or max (0, x – c)
• a product of two or more hinge functions

• Two modeling steps:
• (1) forward pass: obtains model with defined maximum number of terms
• (2) backward pass: improves generality by avoiding an overfit model
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Example MARS Output Models

• Closed-form expressions with respect to cell and supply voltage noise 
parameters

• Suitable to drive early-stage PDN design exploration

Delay Model

Output Slew Model

B1 = max(0, loadout – 0.021); B2 = max(0, 0.021 – loadout); … 
B98 = max(0, offestnoise + 2.4e-12 )×B92; 
B100 = max(0, offsetnoise + 2.4e-12) ×B37;

dcell = 1.02e-11 + 7.35e-10×B1 - 5.89e-10×B2 - 2.17e-11×B3+…
- 1.71e-7×B96+2.43e-7×B98 - 3.03e-8×B100

B1 = max(0, loadout – 0.0009); B2 = max(0, cellsize - 4)×B1; …  
B99 = max(0, 0.05 - slewnoise)×B55; 
B100 = max(0, offsetnoise + 0.15) ×B94;

slewout = 1.23e-11 + 1.53e-10×B1 – 2.05e-10×B2 + 2.05e-9×B3 + … - 1.08e-8×
B98 – 4.33e-9×B99 – 7.42e-9×B100



(9/12)

Accurate Cell Delay Modeling
• Noise characteristics need to 

be considered
• Noise slew affects cell delay 

only when it is comparable to 
that of input slew

• Noise offset affects the 
impact of supply noise on cell 
delay

 CMOS gate delay 
modeling is a nontrivial 
task with nonobvious 
implications
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Worst-Case Performance Model
• GOAL: find set of seven parameters (7-tuple) where 

the path delay is maximum
• Mapping from set of all 7-tuples to cell delay and 

output slew values
• In a single stage pick the 7-tuple with maximum delay
• In a multi-stage path:

• Output slew of the previous stage becomes the input slew to 
the current stage

• Noise offset must be adjusted according to delay and output 
slew values of the previous stages

• Worst-case configuration is always an element of 
|slewin|×|loadout|×|cellsize|×|ampnoise|×|slewnoise|×|offsetnoise|×|temp|

…
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Experimental Setup and Results
• Scripting to generate SPICE decks for 30720 configurations

• Three different paths with different number of stages: (1) only 
inverter, (2) only 2-input NAND, and (3) a mix of inverter and 2-
input NAND

• Models are insensitive to random selection of training data set
• Cell delay model within 6% of SPICE (on average)
• Our multi-stage path delay within 4.3%  of SPICE simulation
• Worst-case predictions are in top 3 (out of 30720 configurations) 

w.r.t. list  

Parameter Values
slewin {0.00056, 0.00112, 0.0392, 0.1728, 0.56, 0.7088}ns
loadout {0.0009, 0.0049, 0.0208, 0.0842}pF

cellsize
INV: {1, 4, 8, 20}                                                                               

2-input NAND: {1, 2, 4, 8}
ampnoise {0, 0.054, 0.144, 0.27}V
slewnoise {0.01, 0.04, 0.07, 0.09}ns
offsetnoise {-0.15, -0.05, 0, 0.05, 0.15}ns

temp {-40, 25, 80, 125}°C
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Extensibility of Approach
• Have used same methodology to develop models for 

interconnect wirelength (WL) and fanout (FO)
• Wirelength model

• On average, within 3.4% of layout data
• 91% reduction of avg error vs. existing models (cf. Christie et al. ’00)

• Fanout model
• On average, within 0.8% of the layout data
• 96% reduction of avg error vs. existing models (cf. Zarkesh-Ha et al. ’00)
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Conclusions
• Generally applicable gate delay modeling methodology

• Leverage supply voltage and temperature variations
• Achieved accurate cell delay and output slew models
• Validated our models against 30720 configurations
• Proposed cell delay model is within 6% of SPICE      

(on average)
• Proposed path delay model is within 4.3% of SPICE 

(on average)
• Proposed models accurately detect worst-case supply 

noise waveform / performance
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