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Wire Scaling Issues and Design Criteria
 On-chip global wires become barrier for achieving

 High-performance: 
 542ps (1mm wire) vs. 161ps (10 FO4 inverter) [ITRS 2008]

 Low-power:
 Contribution for 50% dynamic power. [Magen 2004]

 Various interconnect schemes proposed
 RC wires 
 On-chip T-lines

 transceiver design, equalization, etc.
 Design criteria

 minimum latency
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Throughput-Centric Interconnect Design

 Throughput-centric interconnect design [Shah 2002] become 
necessary because
 Increasing demand for computing capacity
 Emerging parallel computing architectures
 More stringent throughput requirement of on-chip interconnects

 Wires in the NoCs (Networks-on-Chips) [Jantsch 2003]

 Our work
 Wires are pipelined to meet required clock period (throughput)
 Explore the power-saving of pipelined interconnects with more 

design freedoms
 Optimize for different applications

 High-Performance / Low-Power / Moderate Cost
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Overview of Pipelined Global Interconnects 

 Adopt flip-flop based pipelining structure [Heo 2005]

 Flip-flop inserted to meet throughput
 Repeaters inserted for delay optimization

 Two-stage latch-based D flip-flop
 Knobs for manipulating pipelined interconnects

 Wire geometries / repeater placement
 Pipelining depth / supply voltage 
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One stage of pipelined interconnect. Schematic of a latch-based D flip-flop.



Glossary for Pipelined Global Interconnects

 Physical parameters of interconnects/repeaters
 Calculated from ITRS data or based on SPICE characterization 

 Define delay/energy dissipation of one repeater-wire segment
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Assumptions and Modeling
 Assumptions

 Repeaters/flip-flops are inserted evenly along the wire.
 Repeaters/flip-flops are equally sized.
 The size of flip-flop is fixed and optimized for the average-sized 

repeater loading.

 Repeated wire modeling [Zhang 2007]

 Wire delay: Elmore delay

 Wire energy: dynamic + leakage

 is the data activity.
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Modeling of Pipelined Interconnects
 Considering delay/energy overhead of flip-flops

 Effective capacitance: CFF

 Delay of flip-flop: dFF

 Performance modeling
 Delay

 Energy

 Throughput

 Observations
 Throughput improved with more FFs but larger delay/energy.
 With the constraint of target throughput, cost of adding FFs can be minimized. 
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 Repeater/FF delay
 alpha-power current law [Rabaey 2009]

Voltage Scaling Modeling

 Leakage current
 Exponential function [Rabaey 2009] 
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Design Objectives
 Min-Latency

 For conventional low-latency repeated wire design
 Fewer FFs but larger energy/area overhead

 Throughput-Centric Designs [Deodhar 2005]

 Max-TPE (low-power application)
 Optimize throughput-per-bit-energy for single pipelined wire
 Reduce total energy for set of parallel wires

 Max-TPA (high-performance application)
 Optimize throughput-per-area for single pipelined wire
 Reduce total area for set of parallel wires

 Max-TPEA (moderate-cost application)
 Optimize throughput-per-energy-area for single pipelined wire
 Reduce the total power-area product for set of parallel wires
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Performance Metrics
 Throughput

 Maximum clock frequency (unit: GHz or Gbps)

 Latency
 Normalized latency (unit: ps/mm)

 Energy per Bit
 Normalized energy per bit (unit: pJ/mm)

 TPEA
 Throughput-per-energy-area (unit: Gbps/um/pJ)

 Effective pitch is defined as total area divided by wire length
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Performance Evaluation Flow

 Simply the problem by [Nagpal 2007]

 Limiting the range of wire geometries 
(pitch, width)

 Optimize repeater for given wire 
geometry

 Support different objectives
 FFs are added incrementally until 

reaching the throughput 
constraint

 Return performance metrics for 
given supply voltage (VDD) and 
pipelining stage (N) and 
corresponding optimal design.
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Experimental Settings
 Transistor Models

 ASU predictive technology models
 Level 54 BSIM3v3 MOSFET models

 Repeater/Flip-Flop Characterization
 HSPICE timing/power simulation
 MATLAB curve regression and whole flow implementation

 Global Wire Parameters
 Wire length: 10mm
 Switching factor: 0.2
 Upper bound of wire pitch: 1um

 Voltage/Technology Scaling
 Supply voltage: 0.7V  1.3V (50mV step)
 Technology: 65nm, 45nm, 32nm, 22nm
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Pipelining Effect

 Study impact of pipelining using 45nm under nominal VDD=1V
 Throughput is improved with deeper pipelining

 Throughput-centric design uses more FFs

 Latency/Energy increases with deeper pipelining
 Min-latency achieves lowest delay but largest energy
 Throughput-centric design reduces energy greatly (~4x) with delay overhead 

(~2.5x) 
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Voltage Scaling Effect

 Study impact of voltage scaling using 45nm under throughput constraint
 Latency decreases as VDD increases

 Tend to saturate when VDD is larger than the nominal value
 Latency increases more quickly for Min-Latency/TPA as VDD goes smaller 

 Energy increases as VDD increases
 Similarly, energy of Min-Latency/TPA increases more quickly

 Optimal VDD for TPEA metric
 Reducing VDD improves TPEA for throughput-centric designs.
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Technology Scaling Effect
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 Study impact of technology scaling under nominal VDD and throughput 
constraint.

 Latency increases nearly exponentially (1.2-1.4x per generation)
 Drop from 65nm to 45nm due to improved process.

 Energy decreases nearly exponentially (~0.7x per generation)
 TPEA improves with process scaling

 2.4x per generation for throughput-centric designs
 1.5x per generation for min-latency design



Design Example

 Two design criterions are compared using 45nm for the same 
throughput constraint.

 Design variables
 Max-TPEA uses deeper pipelining and lower voltage (1.0V  0.8V)
 Max-TPEA uses narrower wire (0.07x) and weak repeater (0.1x)

 Performance metrics
 Latency increases
 But, energy/area reduces
 25x improvement on overall TPEA
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Conclusion
 We study the performance of pipelined global 

interconnects with voltage/process scaling for 
different applications.

 Throughput-centric designs are introduced and 
compared with min-latency design:
 Deeper pipelining to alleviate timing slack and therefore reduce 

energy/area. 
 20%-50% overall TPEA improvement by supply voltage scaling.
 Max-TPEA w/ voltage scaling can improve TPEA by 25x w/ only 

4x latency overhead. 
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Thank You! 
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