3-2-1 Contact: An Experimental Approach to the Analysis of Contacts in 45 nm and Below

Rasit Onur Topaloglu, Ph.D.

GLOBALFOUNDRIES

Outline

Introduction and Motivation

- Impact of Contact Resistance
- Test Structures for Contact Resistance
- Contact-Level Routing
- Conclusions

- In new technologies, contact resistance is increasing due to
 - smaller diameter
 - surface scattering
 - taller contacts
- Contact resistance targets over two technology generations are given below:

Technology	Min	Mean	Max
65 nm	10 Ω	20 Ω	50 Ω
45 nm	20 Ω	40 Ω	100 Ω

Notice the increase in mean and standard deviation,

Contact Resistance in Device Characterization

- Contacts provide connectivity between transistor drain and source to interconnects
- When measuring devices, even for wafer-level measurements on M1, contact resistance is involved⁴

- Introduction and Motivation
- Impact of Contact Resistance
- Test Structures for Contact Resistance
- Contact-Level Routing
- Conclusions

Resistance-Capacitance Trade-Off

 Higher number of contacts increase gate to contact coupling capacitance

Results in slower circuits

- Lower number of contacts increases resistance to device terminals
 - Smaller drain current
 - May result in design rule violations
 - May result in extraction inaccuracies

- Wafer electrical tests need to be fast as hundreds of devices are measured
- Instead of full current-voltage sweep, representative electrical parameters are frequently used

$$VG=0.5 V + \begin{bmatrix} VD=1 V \\ VG=1 V \\ VS=0 V \end{bmatrix} VG=1 V + \begin{bmatrix} VD=0.5 V \\ VG=1 V \\ VS=0 V \\ VS=0 V \end{bmatrix} VS=0 V$$

Data is silicon-influenced and model-based

 Maximal impact increases from 3.3% in 65 nm to 9.21% in 45 nm

- Introduction and Motivation
- Impact of Contact Resistance
- Test Structures for Contact Resistance
- Contact-Level Routing
- Conclusions

We use diffusion fills to control STI width stress [1]
Contact number is adjustable

Test Structures and Silicon Results

		Height Width		Contact 240 40	M1 120 60	V1 120 55	
			No	ldeff (μΑ/μ		mpa	
Ι	II	111	I	499.0	9 (0.00%	, D
			П	416.6	9 ^	16.51	%
			Ш	413.7	3 ´	17.10%	
			IV	442.0	3 ^	11.43%	
			V	476.1	7 4	4.59%	, D
IV	V	VI	VI	466.9	26	6.44%	, D

 Different contact configurations mimic various design styles in custom layouts and standard cells

Test Structures and Capacitance Results

			No	Capacitance (fF)
			I	8.28E-2
			П	1.32E-2
			Ш	1.35E-2
			IV	4.80E-2
			V	3.79E-2
			VI	5.38E-2
IV	V	VI		

More contacts result in increased coupling

SPICE Modeling and Circuit Implications

- RC extractors are suboptimal when transistors are not fully contacted
 - Double counting is possible for contact resistance
 - May result in coupling capacitance inaccuracy
- device model with R impact —

- Some RC extractors
- assume devices are fully contacted or are inaccurate

We generate models which are not contaminated by resistance; we also work with EDA vendors for more accurate capacitance extraction

- Option 1: Use copper instead of tungsten
- Option 2: Merge contacts, i.e., use contact bars

Capacitive coupling increases to 10.20E-2fF
 →only 1.23x as compared to fully contacted
 →up to 2x resistance improvement

- Introduction and Motivation
- Impact of Contact Resistance
- Test Structures for Contact Resistance
- Contact-Level Routing
- Conclusions

A New Layer for Routing

We can use contact-level routing as an interconnect

- Contact route (CR) provides a direct connection to M1, diffusion, or polysilicon in this work
- Height of contact ~3x height of M1
 - \rightarrow ~1/3 lower routing resistance than M1 if copper
 - \rightarrow ~2x larger if tungsten; but can be in parallel
 - \rightarrow negligible contact resistance if routing is in CR ¹⁶

If M1 connects multiple active islands, utilize contact route below M1

		CR	

If M1 does not overlap active or gate areas, utilize contact route below M1

We compare improvement due to contact-level routing of 47 stage fanout-1 4x inverter ring oscillator assuming tungsten contact routes

We achieve 4.92% frequency increase with contact-level routing

- Introduction and Motivation
- Impact of Contact Resistance
- Test Structures for Contact Resistance
- Contact-Level Routing
- Conclusions

- 3. Our test structures and characterization enable accurate models and avoid double counting of contact resistance effect due to RC extraction
- 2. We provide a method for quick library port to contact-level routing

 We analyze contact bars and contact-level routing impact on circuit performance; we obtain
 4.92% improvement with contact-level routing