

Simulation Based Study of Wireless RF Interconnects for Practical CMOS Implementation

Ankit More and BarisTaskin

Department of Electrical and Computer Engineering Drexel University

June 13th, 2010

Global Wiring Paradigm

Problems due to DSM effects

- Time delay
- Clock distribution
- Maximum reachable distance
- Inductance
- Noise
- Routing
- Power distribution

Source: IBM

Source: Generated from Cadence

Source: Rabaey, et. al in "Digital Integrated Circuits", Prentice Hall, 2nd edition

Improved Interconnects

Manufactory solutions

- Changes to surrounding material
- High conductivity metals
- Reverse scaling

Design solutions

- Optical interconnects
- Interconnects using nano-tubes
- Radio frequency (RF) interconnects
 - Microstrip RF
 - Wireless RF

On-Chip Antennas

Concept

Source: K. K. O et. al. in TED

K. K. O et. al., "On-Chip Antennas in Silicon ICs and Their Application", IEEE Transactions on Electron Devices, vol. 52, pp. 1312 - 1319, July 2005.

Antenna Structures

Physical structure

Source: K. K. O et. al. in TED

• Simulation structure

Source: Bialkowski and Abbosh in APSURSI

K. K. O et. al., "On-Chip Antennas in Silicon ICs and Their Application", IEEE Transactions on Electron Devices, vol. 52, pp. 1312 - 1319, July 2005.

M. Bialkowski, and A. Abbosh, "Investigations into intra chip wireless interconnection for ultra large scale integration technology", International Symposium of Antennas and Propagation Society, June 2009.

Demonstration of Wireless Clock Transmission

Challenges for Wireless Interconnects

- 1. Antenna characteristics under high levels of integration
- 2. Radiation effects on metal interconnects
- 3. Radiation effects on circuit devices
- 4. Wireless system performance under switching noise
- 5. Performance comparison with metal interconnects
 - Footprint area
 - Power consumption
 - Delay
 - Clock skew and jitter
 - Bit-error rate

Objectives

- Effects of the electromagnetic radiations from the antennas on metal interconnects considering
 - Interconnects on different metal layers
 - Varying widths of the interconnect
 - Varying lengths of the interconnect
 - Varying distance of the interconnects from the transmitting antenna

 Effects of typical CMOS manufacturing processes on the antenna characteristics

- Adherence to 90° bend angles on antennas
- Presence of high-conductivity epitaxial layer
- Varying metal utilization factor

Wireless Interconnect Analysis

- 3D FEM based full wave electromagnetic analysis
- 250nm CMOS technology rules
- Die size of 6x4 mm²
- Antenna characteristics:
 - Meander dipole antenna
 - 17GHz operation frequency
 - Arm length of 2.4mm
 - Antenna separation of 5mm

Transmission gain used as the figure of merit

Simulation Model

Effects of Epitaxial Layer on Antenna Characteristics

Return loss at the transmitting antenna

- High conductivity epitaxial layer decreases the frequency range of operation
- P-type epitaxial layer is used for all other simulations (typical of most ICs)

Transmission gain between the transmitting and receiving antenna

Electromagnetic Coupling Between Antenna and Interconnects

 Variation with interconnect width and metal layer placement

- Relatively stable and low coupling with width
- Decreases with a higher layer separation

(interconnect length = 1mm)

Electromagnetic Coupling Between Antenna and Interconnects

Variation with interconnect length

- Low coupling
- Peaksat a length of quarter wavelength of the EM wave (=6.8mm/4 = 1.7mm)

Electromagnetic Coupling Between Antenna and Interconnects

Variation with interconnect distance

- Low coupling
- Decreases monotonously with a higher separation between the interconnect and the transmitting antenna

Effects of Metal Utilization on Antenna Characteristics

 Return loss at the transmitting antenna

Transmission gain between the transmitting and receiving antenna

 High metal utilization can reduce the transmission gain between the antennas

Conclusions 1/2

- The coupling with metal interconnect:
 - Is very low, not hindering wireless interconnect operation.
 - Decreases with placement in different metal layers
 - Isunaffected by varying widths of the interconnect
 - Is very low at small interconnect lengths
 - Peaks at interconnect length of approximately a quarter of the wavelength of the electromagnetic waves
 - Monotonously decreases with an increasing distance from the transmitting antenna

Conclusions 2/2

- The "essential" high conductivity epitaxial layer reduces the transmission gain between the antenna pair by approximately 12dB
- The transmission gain between the antenna pair varies depending on the percentage utilization of same metal layer of the antenna
 - Very high utilization ~80% a concern?

Thank You

Ankit More and BarisTaskin

Department of Electrical and Computer Engineering Drexel University

Supplementary Slides

References

- E. G. Friedman, "On-Chip Interconnects: The Past, Present, and Future", Future Interconnects and Networks on Chip, 1st NoC Workshop, March, 2006.
 - {http://async.org.uk/noc2006/pdf/Eby-Friedman.pdf}
- D. Sylvester and K. Keutzer, "A Global Wiring Paradigm for Deep Submicron Design", IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 19, pp. 242 -252, February 2000.
- K. K. O et. al., "On-Chip Antennas in Silicon ICs and Their Application", IEEE Transactions on Electron Devices, vol. 52, pp. 1312 1319, July 2005.
- M. Bialkowski, and A. Abbosh, "Investigations into intra chip wireless interconnection for ultra large scale integration technology", International Symposium of Antennas and Propagation Society, 2009. APSURSI '09, pp. 1 – 4, June 2009.
- Ansoft Corporation, "User's Guide- High Frequency Structure Simulator", ver. 10, June 2005.
- A. More and B. Taskin, "Leakage Current Analysis for Intra-Chip Wireless Interconnects", Proceedings of the IEEE Symposium on Quality Electronic Design, pp. 49 – 53, March, 2010.
- A. More and B. Taskin, "Electromagnetic Compatibility of CMOS On-chip Antennas", Proceedings of the IEEE AP-S International Symposium on Antennas and Propagation, July 2010 (in press).
- A. More and B. Taskin, "Electromagnetic Interaction of On-Chip Antennas and CMOS Metal Layers for Wireless IC Interconnects", Proceedings of the IEEE/ACM Great Lakes Symposium on VLSI Design (GLSVLSI), May 2010.

Technology Trends

- Time delay increases
- Clock distribution is more difficult

 Maximum reachable distance decreases

Source: Sylvester and K. Keutzer in TCAD

Source: Sylvester and K. Keutzer in TCAD

Interconnect Networks

- Inductance effect increases
- Noise increases
- Routing density is reduced
- Power distribution suffers from higher voltage drops

Source: Friedman in 1stNoC Workshop

Interconnect Capacitive Coupling

Source: Friedman in 1stNoC Workshop

Fringing capacitance increases with scaling
– Spacing between lines decreases

Geometric Wire Characteristics

- Narrow lines
 - RC dominant
 - Quadratic delay with line length

- Wide lines
 - Less noise at the far end
 - Linear Delay with line length

Source: Friedman in 1stNoC Workshop

Use of Repeaters in Interconnects

Source: Sylvester and K. Keutzer in TCAD

Source: Friedman in 1stNoC Workshop

History of Interconnect Modeling

 Gate delay was dominant

Capacitive only

• Resistive and capacitive

 Resistive, capacitive and inductive

 $C_{line} = Cl$ $R_{line} = Rl$ $L_{line} = Ll$

Wave Propagation

Source: IBM

Source: K. K. O et. al. in TED

Effect of Substrate Model

Effect of Substrate Model

Source: Bialkowski and Abbosh in APSURSI

Simulation Profile: Antenna with Interconnects

• Objectives:

- To study interference effects on antenna characteristics
- To study radiation effects on metal interconnects

Methodology:

- Measure scattering parameters (s-parameters)
- Calculate transmission gain
- Variance of transmission s-parameter between transmitting antenna and metal interconnects with distance

Simulation Profile: Antenna with Inverters

• Objectives:

To study interference effects on circuit devices

• Methodology:

- Measure electric fields across gate
- Measure electric fields across channel
- Compute radiation induced gate to source and drain to source voltages
- Compute leakage current

Antenna Characterization

Antenna transmission gain, G_a

$$G_{a} = \frac{\left|S_{21}\right|^{2}}{\left(1 - \left|S_{11}\right|^{2}\right)\left(1 - \left|S_{22}\right|^{2}\right)} = G_{t}G_{r}\left(\frac{\lambda}{4\pi R}\right)^{2}e^{-2\alpha R}$$

- Where
 - $G_t \rightarrow$ gain of transmitting antenna
 - $G_r \rightarrow$ gain of receiving antenna
 - λ→ wavelength
 - α→ attenuation constant
 - *R*→ separation between antennas
 - S_{21} , S_{11} , S_{22} \rightarrow elements of the scattering parameter matrix

Antenna Characteristics

 Transmission gain increases with antenna length

 Transmission gain increases with substrate resistivity and oxide thickness

Source: K. K. O et. al. in TED

Antenna Characteristics

- Transmission gain decreases with increasing antenna separation
 - Physical structure

- Simulation structure

$$G_a = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2 e^{-2\alpha R}$$

Source: K. K. O et. al. in TED

Loop Antenna

- Antenna Characteristics
 - Isotropic radiation pattern of loop antenna

Variation with Presence of Metal Interconnects

 Minimal affect on transmission gain in presence of metal interconnects

• Center frequency shifted to a higher range in presence of metal interconnects

Source: Bialkowski and Abbosh in APSURSI

Simulation Profile: Antenna with Inverters

Key equations:

Radiation induced voltage

$$\begin{bmatrix} v \end{bmatrix}_{RAD} = \begin{bmatrix} E_f \end{bmatrix}_{RAD} L$$

Where

- [v]_{RAD} → radiation induced voltage
- $[E_f]_{RAD} \rightarrow$ electric field from antenna radiation
- *L* → length of element

Simulation Profile: Antenna with Inverters

Key equations:

Leakage current in sub-threshold region of operation

$$I_{D} = I_{S} e^{q \mathcal{V}_{GS}/nkT} \left(1 - e^{-q \mathcal{V}_{DS}/kT} \right) \left(1 + \lambda \mathcal{V}_{DS} \right)$$

Where

- *I_s*→ reverse saturation current (≈ 10⁻¹⁴)
- *q*→ charge on an electron
- k→ Boltzman constant
- T → temperature (in Kelvins)
- $\lambda \rightarrow$ channel length modulation (ignored)
- n → empirical constant
- $V_{DS} \rightarrow$ drain to source voltage
- V_{GS} \rightarrow gate to source voltage
- I_D → leakage current (in sub-threshold region of MOSFET)

Material properties

Material	Conductivity (S/m)	Relative permittivity
Aluminum	3.8*10 ⁷	1
Silicon Dioxide	0	3.7
20 Ω -cm Substrate (lightly doped silicon)	5	11.9
P-well (epitaxial layer)	800	11.9
N-well	2300	11.9
P ⁺ /N ⁺ (active regions)	62500	11.9

