Advances in PCB Routing

Martin D.F. Wong Dept of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

SLIP-2010

Printed Circuit Board (PCB)

- Components plug in or mounted on to PCB
- Each component corresponds to a pin array on the board
- Multiple routing layers

PCB Routing

- Planar routing on each layer
- Escape routing
 - Pin to boundary
 - Satisfying constraints
- Area routing
 - Between boundaries
 - Length matching

Length-Matching Routing

T. Yan & M. Wong, ICCAD-2008

Length-matching routing in PCB

- In high frequency boards, the timing requirements on wires are very tight
- Most wires are assigned min-max length bounds
- Difficult due to the competition for resources

Previous Works

LR based monotonic routing

Min-max river routing

General topology

They are all gridded

• Major drawback: problem size determined by physical distance, not routing difficulty

Same topology, but different problem size for gridded router

Problem definition

- Input:
 - Two components and a set of nets connecting them (net ordering on the boundary guarantees planarity)
 - Design rules
 - Length bounds for the nets
- Output
 - Rectilinear routing that satisfies design rule and length bounds

Length-matching = Area-matching

- If we consider the wire as a fat wire width (ε) = wire_width + separation
- Then the length of the wire is proportional to the area it occupies
- Instead of control the length, we control the area each wire occupies.

Bounded-Sliceline Grid

- Originally proposed for placement
- Dissect the plane into cells by short segments (walls)
- By moving the segments, we can enlarge, shrink and move cells

Workflow of our router

Workflow of our router (cont')

(c) Cell Sizing

(d) Detail Routing

BSG embedding

- Can be done by heuristics like maze router
- Need to follow some guidelines:
 - Allow empty rooms between adjacent nets
 - Use proper number of BSG cells
 - Keep the topological relationships between components and pins

BSG embedding

(a) One BSG embedding and its cell sizing result

(b) Another BSG embedding and its cell sizing result

Key step: Cell sizing

- Need to size the cells so that the following constraints are satisfied:
 - Design rule
 - Component and pin location
 - Length(area) bounds for each net
- We formulate this problem as a mathematical programming problem

- Compare with Ozdal & Wong TCAD'06 LRbased router
- Tested on 7 data:
 - monotonic_1*, monotonic_2*, monotonic_3, monotonic_4
 - general_1*, general_2, general_3

Expeirmental results

		our BSG-route				LR router		
		BSG size	LP size	#it.	runtime	routing grid size	runtime	
data	#nets	w imes h	#var. /#constr.		(sec)	$w { imes} h$	(sec)	
monotonic_1	84	87×175	7829 / 14543	2	86	1181×1237	137	
monotonic_2	44	125×95	6093 / 10769	2	73	2252×2383	NEM ^a	
monotonic_3	83	67×173	6000 / 10898	2	56	1012×899	13859	
monotonic_4	45	119×112	6826 / 12057	3	88	2252×680	99491	
general_1	36	105×86	4648 / 8730	3	64	N/A		
general_2	28	62×91	2973 / 5464	3	21	N/A		
general_3	36	109×86	4822 / 9078	3	260	N/A		

^aNEM: Not Enough Memory. The required memory exceeds 4GB.

An example (general_3)

Escape Routing

T. Yan and M. Wong, DAC 2009

Escape Routing

- . Route (black) pins to the boundary of the pin grid array
- . The grid has Orthogonal and Diagonal wiring capacity (*O*-cap and *D*-cap)

Traditional network-flow model

- *O-cap* can be guaranteed, but *D-cap* is not reflected
- Some works assign node capacity to tile node, but it still does not reflect *D*-*cap* correctly

When traditional model fails

- Assume O-cap = 2 and D-cap = 3
- No constraints on tile node leads to illegal routing (a)
- Let tile node capacity = 3 or less misses the legal routing case (b)
- Traditional network-flow model is not capable of capturing diagonal capacity

Our Network Flow Model

Capture *O*-cap and *D*-cap

An orthogonal cut cuts only one hallow edge, which has capacity exactly *O*-*cap*

An diagonal cut cuts two solid edges and center node. The sum of their capacities is

 $2 \times \lfloor O - cap/2 \rfloor + (D - cap - 2 \times \lfloor O - cap/2 \rfloor)$ = D-cap

The Entire Flow Network

Optimal single-layer escape routing!

Missing pin

• In real designs, some pins in the array maybe removed. This leads to extra routing resource

The wiring capacity between A and B increases from 4 to 6 due to the missing pin. We call the difference, 2, *extra capacity* and denote it as Δ

Consider missing pins in our model

- Consider the missing pin as a resource node
- The capacity of the resource node is exactly the extra capacity

- Tested on industrial data
- Results indicate that our model has zero *D*-*cap* violation for all data while traditional model has violations
- Though our model is more complicated, the runtime are comparable

	array	escape	missing	capacities		ies	our model		traditional model	
	$w \times h$	pin no.	pin no.	O	D	Δ	D- cap vio.	$\operatorname{runtime}$	D- cap vio.	$\operatorname{runtime}$
$industrial_1$	14×16	78	13	2	3	3	0	$0.16 \mathrm{~s}$	0	$0.14 \mathrm{~s}$
$industrial_2$	29×11	66	20	2	3	3	0	$0.22 \mathrm{s}$	10	$0.17 \mathrm{~s}$
$industrial_3$	33×14	120	46	2	3	3	0	$0.33 \mathrm{s}$	6	$0.28 \ s$
industrial_4	35×17	160	30	2	3	3	0	$0.61 \mathrm{~s}$	9	$0.28 \ s$
$industrial_5$	35×35	108	105	2	3	3	0	$0.86 \ s$	1	$0.68 \ \mathrm{s}$
$industrial_6$	35×17	143	38	2	3	3	0	$0.39 \mathrm{s}$	0	$0.30 \mathrm{\ s}$
$industrial_7$	35×35	220	106	2	3	3	0	$1.01 \mathrm{~s}$	53	$0.79 \mathrm{\ s}$
$modified_8$	35×35	225	33	2	3	3	0	$0.99 \mathrm{s}$	53	$0.79 \ s$

A sample result

Pin Assignment

H. Kong, T. Yan and M. Wong, ASP-DAC 2010

Pin Assignment for Buses

One routing layer

Pin Assignment Problem

- Assign signals (nets) to Pins
- Significant influence on later routing
- Existing algorithms
 - Based on heuristic metrics to estimate routability
 - No routability guarantee

Simple routing solution

Complex routing solution

Single-Layer Pin Assignment and Routing

- Solve two *independent* escape routing problems
- Assign pins to nets by sweeping pin escape positions
- Optimal pin assignment and routing

Multi-Layer Pin Assignment and Routing

Projection Style Escape

- . **Projection Interval**: Project the bounding box to the component boundary.
- . Nets escape the component from its bus projection interval
- . Need multiple layers
- . Different pin/layer assignments affect routing resource utilization

- . Equal-length routing
- . Back detours in the left component
- . Complex length extension between component boundaries

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	0000000000000000000000
o o o/o/o/o/o/o o o o o o o o o o o o o	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	<u></u>
	$\circ \circ \bullet \circ$
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$\circ \circ \bullet \circ \bullet \circ \bullet \circ \circ \bullet \circ \bullet \circ \bullet \circ \bullet \circ \bullet \circ \bullet$
o olo o o o o o o o o o o o o o o o o o	<u> </u>
o o o o o o o o o o o o o o o o o o o	
	<u> </u>
◦ ◦ ◦ ◦ • • • • • • • • • <u>• • ◦ ◦ ◦ ◦ ◦</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	<u> </u>
	00 • 0 • 0 • 0 • 0 • 0 • 0 • 0
	<u> </u>
oololololololololololololololololololo	
oololololololololololololololololololo	<u> </u>
。。。。	<u></u>
o o ololololololo o o o o o o o o o o o	<u> </u>
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	

Single-layer solution

- . Equal-length solution
- . No back detours
- . Simple length extension between component boundaries
 - 37.15% shorter total length
 - 21.36% shorter escape wire length
 - 44.96% shorter detailed wire length

$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	<u> </u>
$\circ \circ $	<u> </u>
	OOOOOOOOOOO
	0000000000000000000000000000000000
٥٥٥٥٥٥ • • • • • • • • • • • • • • • •	OOOOOOOOOOOOOOOOOOO
	<u> </u>
	<u>00000000000000000000000000000000</u>
	<u> </u>
	<u>000000000000000000000000000000000</u>
	0000000000000000000000000000000000
	<u> </u>
$\circ \circ \circ \circ \circ \circ \bullet \bullet \bullet \bullet \circ \circ \circ \circ \circ \circ \bullet \bullet \bullet \bullet$	000000000000000000000000000000000000000
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cut-style solution · I aver 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\circ \circ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- State-of-the-art industrial PCB
 - 7000+ nets
 - 80 buses
 - 12 routing layers
 - Previously routed manually
 - manual routing typically takes 2 months per board
- Pin assignment and escape routing results
 - All 80 buses takes less than 5 minutes
 - The largest bus
 - 338 nets
 - Takes 6 routing layers

Simultaneous Escape

Lijuan Luo et al, ISPD-2010

Simultaneous Escape

Approach

- Net-by-net routing with various routing styles
- Determine next net to route
- Route net along routing boundary

Routing boundary

- Performs significantly better than Cadence Allegro
- Runtimes range from 0.2s to 289s

		left component	right component	Rout	ability
	#Nets	$\#$ Row \times #Col	$\#Row \times \#Col$	Allegro	B-Escape
Ex1	39	44×20	22×28	100%	100%
Ex2	36	30×18	42×16	100%	100%
Ex3	18	18×24	18×16	100%	100%
Ex4	26	28×32	28×26	95%	100%
Ex5	52	24×26	60×10	80%	100%
Ex6	40	16×14	22×16	100%	100%
Ex7	64	38×16	36×12	90%	100%
Ex8	32	34×12	34×12	100%	100%
Ex9	41	24×14	30×30	100%	100%
Ex10	37	18×28	24×10	95%	100%
Ex11	58	54×12	62×12	96%	100%
Ex12	36	34×28	20×26	100%	100%
Ex13	38	26×28	36×30	70%	100%
Ex14	39	38×36	32×26	80%	100%
# of route	d problems	7/14	14/14		

Bus Escape Problem

Hui Kong et al DAC 2010

Bus Escape Routing

- Route nets from pins to component boundaries
- Keep bus structures
- Routing region for the bus is a *boundary rectangle*
- Formulate as a Maximum Disjoint Subset problem.

Maximum Disjoint Subset (MDS) Problem

- General rectangles \rightarrow NP-complete
- Boundary rectangle \rightarrow Open Problem
 - Rectangle attached to one or more boundaries
- We designed a polynomial time optimal algorithm!

Problem

Solution