Taking semiconductors to the next level

Tier Logic 3D FPGA™ & 3D ASIC™
Worlds first unified 3D IC design platform

Peter Suaris, Tier Logic Inc.
SLIP, June 2010
2D FPGA background

- Large Silicon area to support programming
 - Limiting CR – hurts routing & logic efficiency
- Architecture trade off – channel wires vs. CRAM
 - Process metal pitch \rightarrow fixed wires per logic area

$LO = Logic + FF \quad CR = Config \ RAM \quad RO = routing \ (MUX \ & \ buffers)$
3D Product concepts

• 2D FPGA – poor area, cost, power, speed

• 3D FPGA™ – better area, power, cost, speed
 – Same placement / same die 3D ASIC™
 – One design – FPGA/ASIC options
“Bitstream” timing closure

TierFPGA
• TFT SRAM

TierASIC
• Metal ROM

MultiASIC™
• TFT MUX

3D Static Control

Dynamic Signals

One bitstream = identical timing = deterministic

Base die
Unified process

- TFT SRAM over CMOS
 - FPGA fabric / FPGA tools
 - Temperature < 400 °C

- Metal ROM over CMOS
 - FPGA fabric / FPGA tools
 - “Bitstream” custom M9
Process technologies

- TFT SRAM over CMOS
 - FPGA fabric / FPGA tools
 - Temperature < 400 °C

- Metal ROM over CMOS
 - FPGA fabric / FPGA tools
 - “Bitstream” custom M9
TFT SRAM latches

- Static circuits
- V_T not critical
- Low power
Channel wires

- **2D FPGA dilemma**
 - More CR to reduce N
 - More CR – increases cell Area – no gain

- **3D FPGA benefit**
 - CR in 3D – more area available for CR
 - More CR – reduce N

- **3D FPGA routing**
 - Larger logic clusters to reduce IO
 - More CR to use less wires
Routing architecture

• Logic cell area = 1
 – Wires / area = N
 – RO per wire = 0.6 / N
 – Area = 1 = LO + CR + RO₁
 – LO = 12.5%
 – LO efficiency ~ ¼ of ASIC

No CR 2D FPGA cell area = f

Area:
CR = CRAM LO
= Logic
RO = Routing

• New logic cell area = f
 – Wires = N * f (< N)
 – RO₂ = 0.6 * f (< 0.6)
 – Area = f = LO + RO₂
 – f = 0.313
 – LO = 40% → 3.2x better
 – More CR for ~ N/3 wires
Logic efficiency

- **2D FPGA dilemma**
 - More IO for higher LO efficiency
 - More IO – more CR – increase area – no gain

- **3D FPGA benefit**
 - CR in 3D – more IO & CR – better LO

- **3D FPGA logic**
 - Larger clusters & better packing
3D IC for FPGAs

- Fine Grain for logic + Course Grain for routing
- Routing breakthroughs
 - One tool for FPGA and ASIC
 - “Bitstream” style of timing closure
 - More CR to reduce channel wires needed
- Logic breakthroughs
 - More IO & CR to improve logic packing
- Standard front end tools
 - Leverage existing synthesis tools & IP
 - Push button – no new learning
Improving gate density

• Approach ASIC gate density
• Improved mobility switch fabric

3D FPGA™
Low ROI IC’s

2D FPGA

Tru3D™
FPGA
ASSP / ASIC

Competition
Tier Logic 2010
Tier Logic 2012
Competitive evolution

- Multi-faceted technology evolution
 - 3.5x 3D FPGA
 - 7x Tru3D
- Programmability – as needed – iterative
- Fixed function – when satisfied
- All future ICs will need programmability
- 56 issued patents
4LUT gate density

2D FPGA 4LUTs follow Moore’s Law
- 110 /mm² 2000 (180 nm)
- ~4500/mm² 2013 (20nm)

6 nodes ~ 40x

3D offers higher 4LUTs
- 16k /mm² 2013 (28 nm)
Summary

- Unified IC design for FPGA & ASIC
 - Beyond process scaling
 - “Bitstream” concept to 3D ICs
- Worlds first monolithic 3D FPGA
 - Same “netlist / placement / base-die” → 3D ASIC
 - 3D FPGA/ASIC – available 2010
- Augment programmability to ASIC density
 - Tru3D FPGA/ASIC – available 2012
- *Tier Logic: taking semiconductors to the next level*