

Taking semiconductors to the next level

Tier Logic 3D FPGA™ & 3D ASIC™ Worlds first unified 3D IC design platform

Peter Suaris, Tier Logic Inc.

SLIP, June 2010

©2010 Tier Logic - Public

2D FPGA back ground

- Large Silicon area to support programming
 - Limiting CR hurts routing & logic efficiency
- Architecture trade off channel wires vs. CRAM
 - Process metal pitch → fixed wires per logic area

LO = Logic + FF CR = Config RAM RO = routing (MUX & buffers)

- 3D FPGA[™] better area, power, cost, speed
 - Same placement / same die 3D ASIC™
 - One design FPGA/ASIC options

"Bitstream" timing closure

Unified process

"Bitstream" custom M9

TERLOGIC TFT SRAM latches

Channel wires

- 2D FPGA dilemma
 - More CR to reduce N
 - More CR increases cell Area – no gain
- 3D FPGA benefit
 - CR in 3D more area available for CR
 - More CR reduce N
- 3D FPGA routing
 - Larger logic clusters to reduce IO
 - More CR to use less wires

Routing architecture

2D FPGA cell area = 1

- Logic cell area = 1
 - Wires / area = N
 - RO per wire = 0.6 / N
 - Area = $1 = LO + CR + RO_1$
 - LO = 12.5%
 - LO efficiency ~ ¼ of ASIC

Area: CR = CRAM LO = Logic RO = Routing

No CR 2D FPGA cell area = f

- New logic cell area = f
 - Wires = N * f (< N)</p>
 - $RO_2 = 0.6 * f$ (< 0.6)
 - Area = $f = LO + RO_2$
 - f = 0.313
 - LO = $40\% \rightarrow 3.2x$ better
 - More CR for ~ N/3 wires

Logic efficiency

- 2D FPGA dilemma
 - More IO for higher
 LO efficiency
 - More IO more CR
 - increase area no gain
- 3D FPGA benefit
 - CR in 3D more IO
 & CR better LO
- 3D FPGA logic
 - Larger clusters & better packing

3D IC for FPGAs

- Fine Grain for logic + Course Grain for routing
- Routing breakthroughs
 - One tool for FPGA and ASIC
 - "Bitstream" style of timing closure
 - More CR to reduce channel wires needed
- Logic breakthroughs
 - More IO & CR to improve logic packing
- Standard front end tools
 - Leverage existing synthesis tools & IP
 - Push button no new learning

- Approach ASIC gate density
- Improved mobility switch fabric

3D FPGA[™] **FPGA**

Tru3D™ **FPGA** ASSP / ASIC

Competitive evolution

- Multi-faceted
 - technology evolution
 - 3.5x 3D FPGA
 - 7x Tru3D
- Programmability as needed – iterative
- Fixed function when satisfied
- All future ICs will need programmability
- 56 issued patents

- Unified IC design for FPGA & ASIC
 - Beyond process scaling
 - "Bitstream" concept to 3D ICs
- Worlds first monolithic 3D FPGA
 - − Same "netlist / placement / base-die" \rightarrow 3D ASIC
 - 3D FPGA/ASIC available 2010
- Augment programmability to ASIC density
 - Tru3D FPGA/ASIC available 2012
- Tier Logic: taking semiconductors to the next level