Communication The Next Resource War

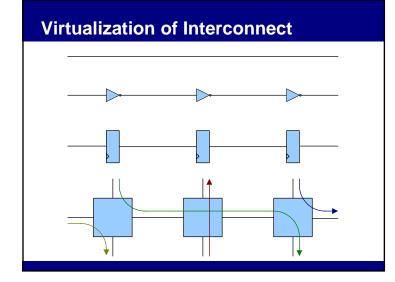
Simon Moore & Daniel Greenfield

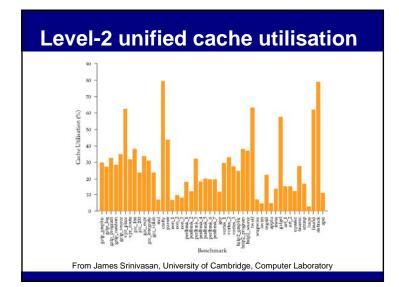
SLIP - Invited Talk, April 6th 2008

Computer Architecture Group

Computation vs. Communication

• Relative power consumed


	1	
technology node	130nm CMOS	50nm CMOS
transfer 32b across chip	20 ALU ops	57 ALU ops
transfer 32b off-chip	260 ALU ops	1300 ALU ops


Overview

Background Rent's Rule for NoCs Communication in Algorithms Conclusions & Research Questions

When did global wire scaling stop?

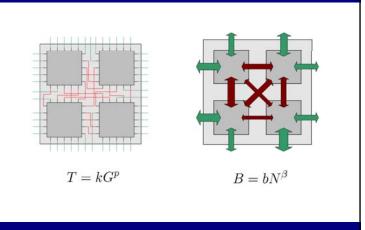
- Simple global interconnect has hardly improved in 30 years!
 - chip area has changed little since the birth of the microprocessor
 - thinner wires don't help and newer materials are a one-off trick
- It's only now that it has started to hurt

Locality of Data

- The main weapon to minimise communication
- Current approaches:
 - caching
 - relies on statistical properties of temporal and address locality to provide hardware support
 - scratch pad memories
 - places the burden on the programmer

The problem with caches

- Often 80% of the cache holds dead data
- That's a huge waste of transistors
- We need to be smarter about exploiting locality

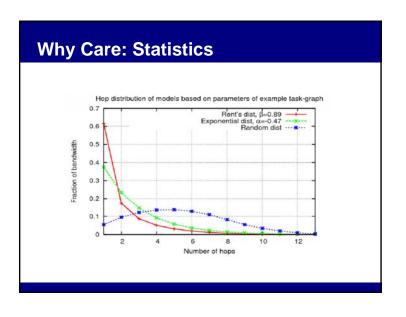

Overview

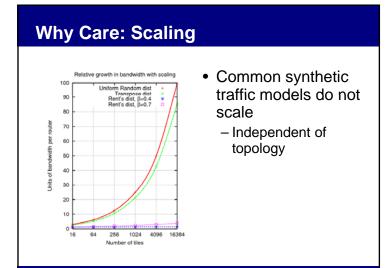
Background

Rent's Rule for NoCs

Communication in Algorithms Conclusions & Research Questions

A New Rent's Rule




Why Expect This?

Domain to minimize	Wires	NoC
Delay	Wire delay	NoC latency
		(& congestion)
Congestion	Wire-density	Cross-sectional BW
Power	Wire buffering & length	Hop-length & router- utilisation

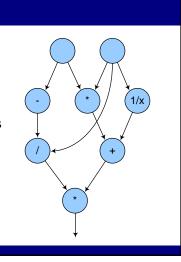
• BUT Needs

- Topology supporting multi-scale locality
- $-\operatorname{Mapping}$ with locality as implicit or explicit goal
- Communication graphs with multi-scale / fractal locality properties

Communication Constraints in SW

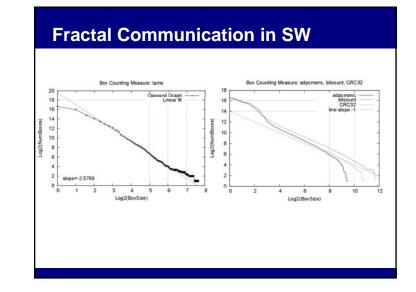
- Chip Multiprocessors (CMP) on NoC
 - Different to multi-chip multiprocessors
 - Much greater on-chip bandwidth
 - Lower latencies
 - Supports fine-grain parallelism
- Communication in algorithms
 - Poor understanding of communication locality
 - How much locality can be extracted / exploited?
 - What fundamental properties do they possess?
 - Can we model the locality?

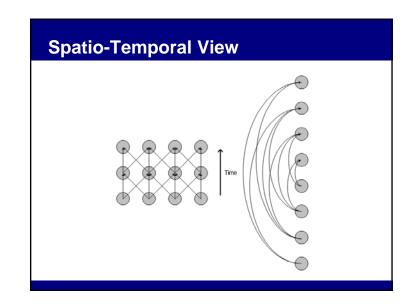
Overview

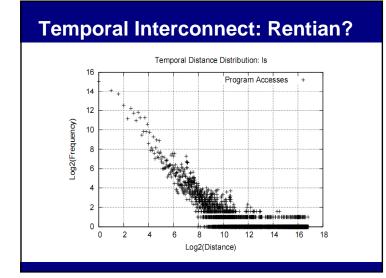

Background Rent's Rule for NoCs

Communication in Algorithms

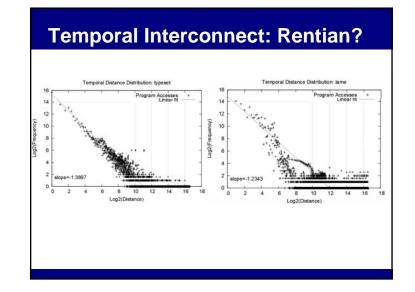
Conclusions & Research Questions


Software Graphs


- Dynamic data dependency graph
 - graph representation of computation data dependencies
- Assumes perfect oracle of control-flow decisions
- Edges
 - communication via RF/caches/externalmem/virtual-mem/etc
- Graph distance vs. instruction distance



Registers (Virtualized)	L1 cache	L2 cache	L3 cache	Ext Memory	Virtual Memory
	Ten	nporal Distan	ce and Cost		
			<i>r</i>		
Memor	y as wir	es			
- Rogie	tor filos	connecti	na inetri	iction of	itout t
	ster files	connecti	ng instru	iction o	utput t
– Regis input	ster files	connecti	ng instru	iction oi	utput t
input	ter files		ng instru	iction ou	utput t


Overview

Background

Rent's Rule for NoCs

Communication in Algorithms

Conclusions & Research Questions

Conclusions and Research Questions

- Networks-on-chip transforms physical interconnect into virtual interconnect
- Adding virtualisation/indirection resolves many problems in computer science, but how do we maximise the benefits?
 - + Higher utilisation
 - + Specialised interconnect
 - + Higher abstraction / modular composition
 - Latency
 - Scheduling
 - Area

Conclusions and Research Questions

- · Software exhibits fractal locality
 - Supports requirements for Rentian statistics
 - Can we exploit this behaviour?
 - Can we automatically reduce communication complexity/dimensionality?
 - How tight are the dimensionality constraints on communication statistics?

Contact Details

Computer Architecture group web page: http://www.cl.cam.ac.uk/research/comparch

Email:

simon.moore@cl.cam.ac.uk daniel.greenfield@cl.cam.ac.uk

Conclusions and Research Questions

- Memory as temporal interconnect
 - Similarities to spatial interconnect / switch
 - Distance distributions appear Rentian?
 - Can we leverage our statistical models to design better temporal interconnect?
- Unification of views
 - Data is routed in space and time
 - What new techniques can we develop by unifying spatial and temporal communication?