Efficient Tiling Patterns for Reconfigurable Gate Arrays

(or Why you shouldn't be driving in Manhattan ?)

Sumanta Chaudhuri

SLIP'08, April 5th Newcastle, UK

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 1 / 35

∃ >

Plan

Intuition

First Principles

• Evaluation Method

- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

Intuition: The Four Color Theorem

(a) The Map of Europe in Four Colors

(b) No more than Four Mutual Neighbours in a plane

Figure 1: The Four Color Theorem.

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

Intuition: Tiling patterns

Figure 2: More Mutual Neighbours The Better

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 3 / 35

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

First Principles: Measurement Units

- Hops = No. of constituting segments (always integer)
- True Length = True interconnect length in metric units

Figure 3: Hops and true length

$$T = tB^p, \quad 0 \le p \le 1, ext{ where:}$$
 (1)

6 / 35

- T is the number of terminals of the partition,
- B is the number of elementary blocks in that partition,
- *t* is the Rent coefficient, *i.e.* the average number of terminals par elementary block,
- p is the Rent exponent.

$$T = tB^p, \quad 0 \le p \le 1, ext{ where:}$$
 (1)

- T is the number of terminals of the partition,
- B is the number of elementary blocks in that partition,
- *t* is the Rent coefficient, *i.e.* the average number of terminals par elementary block,
- p is the Rent exponent.
- Hereafter we will represent each user netlist as a triplet $\langle t, p, B \rangle$

 $\overline{n_k} = \alpha t B (1 - 4^{p-1}) 4^{k(p-1)}$ $r = |x_1 - x_2| + |y_1 - y_2|$

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

- ∢ ∃ ▶

$$r_{adj} = \frac{1}{W^4} \sum_{i,a=1}^{W} \sum_{i,a=1}^{W} \sum_{i,a=1}^{W} \sum_{i,a=1}^{W} \sum_{i,a=1}^{W} (W + i_A - i_B + |j_A - j_B|)$$

- ∢ ∃ ▶

$$r_{adj} = \frac{1}{W^4} \sum_{i_A=1}^{W} \sum_{j_A=1}^{W} \sum_{i_B=1}^{W} \sum_{j_B=1}^{W} (W + i_A - i_B + |j_A - j_B|)$$

$$r_{opp} = \frac{1}{W^4} \sum_{i_A=1}^{W} \sum_{j_A=1}^{W} \sum_{i_C=1}^{W} \sum_{j_C=1}^{W} [(W + i_A + j_A - i_C - j_C]]$$

$$\overline{r_k} = \frac{4\overline{r_{adj}} + 2\overline{r_{opp}}}{6}$$

 $\overline{n_k} = \alpha t B (1 - 4^{p-1}) 4^{k(p-1)}$ $r = |x_1 - x_2| + |y_1 - y_2|$

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

∢ ∃ ►

r_{ad}

	,				
			F	,	

$$\overline{n_k} = \alpha t B (1 - 4^{p-1}) 4^{k(p-1)}$$

$$r = |x_1 - x_2| + |y_1 - y_2|$$

$$y = \frac{1}{W^4} \sum_{i_A=1}^{W} \sum_{j_A=1}^{W} \sum_{i_B=1}^{W} \sum_{j_B=1}^{W} (W + i_A - i_B + |j_A - j_B|)$$

$$T_{opp} = \frac{1}{W^4} \sum_{i_A=1}^{W} \sum_{j_A=1}^{W} \sum_{i_C=1}^{W} \sum_{j_C=1}^{W} [(W + i_A + j_A - i_C - j_C]]$$

$$\overline{r_k} = \frac{4\overline{r_{adj}} + 2\overline{r_{opp}}}{6}$$

7 / 35

 $L_{netlist} = \overline{n_0} \times \overline{r_0}$

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008

$$\overline{n_k} = \alpha t B (1 - 4^{p-1}) 4^{k(p-1)}$$

$$r = |x_1 - x_2| + |y_1 - y_2|$$

$$r_{adj} = \frac{1}{W^4} \sum_{i_A=1}^{W} \sum_{j_A=1}^{W} \sum_{i_B=1}^{W} \sum_{j_B=1}^{W} (W + i_A - i_B + |j_A - j_B|)$$

$$r_{opp} = \frac{1}{W^4} \sum_{i_A=1}^W \sum_{j_A=1}^W \sum_{i_C=1}^W \sum_{j_C=1}^W [(W + i_A + j_A - i_C - j_C]]$$

$$\overline{r_k} = \frac{4\overline{r_{adj}} + 2\overline{r_{opp}}}{6}$$

 $L_{netlist} = \overline{n_0} \times \overline{r_0} + \overline{n_1} \times \overline{r_1}$

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April

$$\overline{n_k} = \alpha t B (1 - 4^{p-1}) 4^{k(p-1)}$$

$$r = |x_1 - x_2| + |y_1 - y_2|$$

$$r_{adj} = \frac{1}{W^4} \sum_{i_A=1}^{W} \sum_{j_A=1}^{W} \sum_{i_B=1}^{W} \sum_{j_B=1}^{W} (W + i_A - i_B + |j_A - j_B|)$$

opp =
$$\frac{1}{W^4} \sum_{i_A=1}^W \sum_{j_A=1}^W \sum_{i_C=1}^W \sum_{j_C=1}^W [(W + i_A + j_A - i_C - j_C)]$$

$$\overline{r_k} = \frac{4\overline{r_{adj}} + 2\overline{r_{opp}}}{6}$$

 $L_{netlist} = \overline{n_0} \times \overline{r_0} + \overline{n_1} \times \overline{r_1} + \overline{n_2} \times \overline{r_2}$

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

,

April 5th, 2008 7 / 35

First Principles: Equivalence of Wire Length & Wire Flow

Equivalence of Wire Length & Wire Flow

Total Interconnect length = No. of occupied segments/tile \times No. of Tiles.

First Principles: Equivalence of Wire Length & Wire Flow

Equivalence of Wire Length & Wire Flow

Total Interconnect length = No. of occupied segments/tile \times No. of Tiles.

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

First Principles: Equivalence of Wire Length & Wire Flow

Equivalence of Wire Length & Wire Flow

Total Interconnect length = No. of occupied segments/tile \times No. of Tiles.

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 8 / 35

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

Evaluation Method

→ First we calculate the point-to-point distance on the tiling pattern.

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 10 / 35

- First we calculate the point-to-point distance on the tiling pattern.
- Next we calculate the Total interconnect length for a given user netlist < t, p, B >

- First we calculate the point-to-point distance on the tiling pattern.
- Next we calculate the Total interconnect length for a given user netlist < t, p, B >
- → We calculate the Average channel width required

- First we calculate the point-to-point distance on the tiling pattern.
- Next we calculate the Total interconnect length for a given user netlist < t, p, B >
- We calculate the Average channel width required
- → We count the no. of switches for that channel width

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

$$D_x = |x_1 - x_2|, \qquad D_y = |y_1 - y_2|$$

$$r = D_x + D_y - D_x$$
 $D_y \ge D_x$

Figure 5: Distance Between two points in an Octagonal grid

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 12 / 35

$$D_x = |x_1 - x_2|, \qquad D_y = |y_1 - y_2|$$

$$r = D_x + D_y - D_x$$
 $D_y \ge D_x$

$$r = D_y + D_x - D_y$$
 $D_x \ge D_y$

Figure 5: Distance Between two points in an Octagonal grid

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 12 / 35

$$D_x = |x_1 - x_2|, \qquad D_y = |y_1 - y_2|$$

$$r = D_x + D_y - D_x$$
 $D_y \ge D_x$

$$r = D_y + D_x - D_y$$
 $D_x \ge D_y$

Octagonal Grid

$$r = \frac{1}{2} \left(D_x + D_y + \left| D_x - D_y \right| \right)$$

Figure 5: Distance Between two points in an Octagonal grid

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 12 / 35

Figure 6: No. of switches Required

Octagonal Grid

No. of Switches = $C_2^N \times w^2$ No. of Switches = $28 \times w^2$

Octagonal Grid

$$L_{hops} = 4w imes B$$
 .
 $\overline{w} = rac{L_{wire}}{4B}$.

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 14 / 35

э

Point-to-Point Distance in Hops remains the same across Transformations

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 14 / 35

$$D_x = |x_1 - x_2|, \qquad D_y = |y_1 - y_2|$$

$$r = \frac{1}{2} (D_x + D_y + |D_x - D_y|) \qquad (x_2 \ge x_1, y_2 \ge y_1)$$
$$(x_2 \le x_1, y_2 \le y_1)$$

Figure 7: Distance Between two points in an hexagonal grid

$$D_x = |x_1 - x_2|, \qquad D_y = |y_1 - y_2|$$

$$\begin{aligned} r &= \frac{1}{2} \left(D_x + D_y + \left| D_x - D_y \right| \right) & (x_2 \ge x_1, y_2 \ge y_1) \\ & (x_2 \le x_1, y_2 \le y_1) \end{aligned}$$

Figure 7: Distance Between two points in an hexagonal grid

$$D_x = |x_1 - x_2|, \quad D_y = |y_1 - y_2|$$

$$r = \frac{1}{2} (D_x + D_y + |D_x - D_y|) \qquad (x_2 \ge x_1, y_2 \ge y_1) (x_2 \le x_1, y_2 \le y_1)$$

 $D_x + D_y$ otherwise

Hexagonal Grid

Figure 7: Distance Between two points in an hexagonal grid

$$2r = \left(1 + \frac{(x_2 - x_1)(y_2 - y_1)}{|x_2 - x_1| |y_2 - y_1|}\right) \frac{1}{2} \left[(D_x + D_y) + |D_x - D_y|\right] + \left(1 - \frac{(x_2 - x_1)(y_2 - y_1)}{|x_2 - x_1| |y_2 - y_1|}\right) \left[D_x + D_y\right]$$

・ 「 ト ・ ヨ ト ・ ヨ ト

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

Figure 8: No. of switches Required

Hexagonal Grid

No. of Switches =
$$C_2^N \times w^2$$

No. of Switches = $15 \times w^2$

Hexagonal Grid

$$L_{hops} = 3w imes B$$
 . $\overline{w} = rac{L_{wire}}{3B}$.

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

Parameter	Square	Hexagonal	Octagonal
Total Interconnect Length	1	0.85	0.69

3
Parameter	Square	Hexagonal	Octagonal
Total Interconnect Length	1	0.85	0.69
Average Channel Width	1	0.56	0.35

- ₹ 🖬 🕨

э

э

Parameter	Square	Hexagonal	Octagonal
Total Interconnect Length	1	0.85	0.69
Average Channel Width	1	0.56	0.35
No. of Switches/SwitchBox	1	0.78	0.57

э

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

→ arity A: no of branches

Image: A match a ma

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 20 / 35

э

- arity A: no of branches
- → α : ratio of channel width of a level to it's next level

A 🕨 🔺

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008

20 / 35

- arity A: no of branches
- α : ratio of channel width of a level to it's next level
- → and w_k as the channel width at level k.

$$\alpha = \frac{w_{k+1}}{w_k}$$

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008

20 / 35

- arity A: no of branches
- α : ratio of channel width of a level to it's next level
- and w_k as the channel width at level k.

$$\alpha = \frac{w_{k+1}}{w_k}$$

Point to point distance between two points between two adjacent partitions at level k r = (2k + 1)

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

Comparison

Figure 10: Total Interconnect length for different Tiling Patterns for a given user netlist $\left<4,0.66,4^L\right>$

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 21 / 35

э.

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

Layout Schemes: Hexagonal

Figure 11: Hexagonal FPGA Layout Scheme

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 23 / 35

A⊒ ▶ ∢ ∃

Layout Schemes: Hexagonal with 45° lines

Figure 12: Standard Processes support 45° metal lines

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 24 / 35

Layout Schemes: Octagonal

Figure 13: Octagonal FPGA Layout Scheme

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

∃ → April 5th, 2008

< A

3

25 / 35

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

Depopulation Schemes

Figure 14: No. of switches are more than the Channel Capacity

No. of switches between two channels $(W^2) >>$ Channel Capacity (W)

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 27 / 35

Depopulation Schemes

• No. of switches between two channels $(W^2) >>$ Channel Capacity (W)

 Let's Depopulate the X-Bar to Disjoint Switchbox.

Figure 14: No. of switches are more than the Channel Capacity

Depopulation Schemes

Figure 15: Eliminating Unused connections in Shortest Path

Hexagonal Grid

No. of Switches(X-bar) = $15 \times w^2$ No. of Switches(Depopulated) = $9 \times w$

Octagonal Grid

No. of Switches(X-bar) = $28 \times w^2$ No. of Switches(Depopulated) = $12 \times w$

Figure 16: Eliminating Unused connections in Shortest Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 28 / 35

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

Estimated True Length

Tot. Interconnect length(μm)	=	Av. Length per $hop(\mu m/hop)$		
		\times Tot. Interconnect Length in Hops(hops).		

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008 30 / 35

Estimated True Length

Tot.	Interconnect	$length(\mu m)$	
------	--------------	-----------------	--

= Av. Length per hop $(\mu m/hop)$ ×Tot. Interconnect Length in Hops(hops).

Length per hop	_	$2 \times \text{Straight hop} + 2 \times \text{Diagonal hop}$				
	_	4				
Length per hop	=	$1.207 \times \mu m/hop$				

Figure 17: Estimation of True Length in Octagonal grid

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

April 5th, 2008 30 / 35

Estimated True Length

= Av. Length per hop $(\mu m/hop)$ ×Tot. Interconnect Length in Hops(hops).

Longth nor hon	_ :	$2 \times $ Straight hop $+ 2 \times $ Diagonal hop					
Length p	er nop					4	
Length p	er hop	= 1	.207x	μm_{f}	/hop		
1	Estimated	l True	Lengt	th	=	11 imes 1.20)7x
]	Estimated	l True	Lengt	th	=	13.377x	μ m
	A	Actual	Lengt	th	=	13.484x	μm

30 / 35

Figure 17: Estimation of True Length in Octagonal grid

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M April 5th, 2008

Octagonal Area $0.57 \times A$

Length/hop= $0.75 \times 1.207 \times \sqrt{A} \mu m/hop$ Length/hop= $0.905 \times \sqrt{A} \mu m/hop$

Figure 18: For a given User netlist < t, p, B >

= 1 \times 1 \times \sqrt{A} μ m E(L_{square}) = 0.85 \times 0.88 $\times \sqrt{A}$ μm $E(L_{Hex})$ $= 0.748\sqrt{A} \mu m$ = 0.69 \times 0.905 $\times \sqrt{A}$ μm E(L_{Octagonal}) $= 0.63\sqrt{A} \mu m$

< □ > < □ > < □ > < □ > < □ >

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn't be driving in M

3

Plan

- Intuition
- First Principles
- Evaluation Method
- Tiling Patterns
 - Octagonal Tiling
 - Hexagonal Tiling
 - Hierarchical Tiling
- Comparison
- Layout Schemes
- Depopulation Schemes
- True Length Estimation
- Conclusion & Future Research
- Questions

→ We revisited Rent & Donath for our first principles.

- We revisited Rent & Donath for our first principles.
- → We established a relationship between interconnect length & interconnect flow(channel width)

- We revisited Rent & Donath for our first principles.
- We established a relationship between interconnect length & interconnect flow(channel width)
- → We developed a method to evaluate generic tiling patterns based on these principles

- We revisited Rent & Donath for our first principles.
- We established a relationship between interconnect length & interconnect flow(channel width)
- We developed a method to evaluate generic tiling patterns based on these principles
- → We derived

- We revisited Rent & Donath for our first principles.
- We established a relationship between interconnect length & interconnect flow(channel width)
- We developed a method to evaluate generic tiling patterns based on these principles
- We derived
 - Expressions for point-to-point distance in Hexagonal, Octagonal & hierarchical Gate Arrays

- We revisited Rent & Donath for our first principles.
- We established a relationship between interconnect length & interconnect flow(channel width)
- We developed a method to evaluate generic tiling patterns based on these principles
- We derived
 - Expressions for point-to-point distance in Hexagonal, Octagonal & hierarchical Gate Arrays
 - Expressions for Total Interconnect Length & Channel width for each of them

- We revisited Rent & Donath for our first principles.
- We established a relationship between interconnect length & interconnect flow(channel width)
- We developed a method to evaluate generic tiling patterns based on these principles
- We derived
 - Expressions for point-to-point distance in Hexagonal, Octagonal & hierarchical Gate Arrays
 - Expressions for Total Interconnect Length & Channel width for each of them
 - We compared them assuming X-Bar switchbox.(global routing)

→ We have seen possible layout schemes for Hexagonal & Octagonal Gate Arrays

- We have seen possible layout schemes for Hexagonal & Octagonal Gate Arrays
- → We discussed depopulation schemes.

- We have seen possible layout schemes for Hexagonal & Octagonal Gate Arrays
- We discussed depopulation schemes.
- → Our future work concerns:

- We have seen possible layout schemes for Hexagonal & Octagonal Gate Arrays
- We discussed depopulation schemes.
- Our future work concerns:
 - Modification of VPR to incorporate these Gate-Arrays.

- We have seen possible layout schemes for Hexagonal & Octagonal Gate Arrays
- We discussed depopulation schemes.
- Our future work concerns:
 - Modification of VPR to incorporate these Gate-Arrays.
 - P/R Experiments with a set of Benchmarks (QUIP)

- We have seen possible layout schemes for Hexagonal & Octagonal Gate Arrays
- We discussed depopulation schemes.
- Our future work concerns:
 - Modification of VPR to incorporate these Gate-Arrays.
 - P/R Experiments with a set of Benchmarks (QUIP)
 - Actual CMOS layouts

Thank You & Have a Nice Day

(Author's Version of the article with big Mathematical fonts is available at

http://comelec.enst.fr/~chaudhur/Tiles_big.pdf)