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Intuition: The Four Color Theorem

(a) The Map of Europe in Four
Colors

(b) No more than Four Mutual
Neighbours in a plane

Figure 1: The Four Color Theorem.
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Intuition: Tiling patterns

(a) Square (b) Hexagonal (c) Octagonal

Figure 2: More Mutual Neighbours The Better

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn’t be driving in Manhattan ?) ENST, CNRSApril 5th, 2008 3 / 35



Plan

Intuition

First Principles

Evaluation Method

Tiling Patterns
Octagonal Tiling

Hexagonal Tiling

Hierarchical Tiling

Comparison

Layout Schemes

Depopulation Schemes

True Length Estimation

Conclusion & Future Research

Questions

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn’t be driving in Manhattan ?) ENST, CNRSApril 5th, 2008 4 / 35



First Principles: Measurement Units

Hops = No. of constituting
segments (always integer)

True Length = True
interconnect length in metric
units

1 HOP

3 HOPs

40 µm

Figure 3: Hops and true length
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First Principles: Rent’s Rule

T = tBp
, 0 ≤ p ≤ 1, where: (1)

T is the number of terminals of the partition,

B is the number of elementary blocks in that partition,

t is the Rent coefficient, i.e. the average number of terminals par
elementary block,

p is the Rent exponent.
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First Principles: Rent’s Rule

T = tBp
, 0 ≤ p ≤ 1, where: (1)

T is the number of terminals of the partition,

B is the number of elementary blocks in that partition,

t is the Rent coefficient, i.e. the average number of terminals par
elementary block,

p is the Rent exponent.

Hereafter we will represent each user netlist as a triplet 〈t, p,B〉
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First Principles: Donath Revisited

A B

D C

W

nk = αtB(1 − 4
p−1

)4
k(p−1)

r = |x1 − x2| + |y1 − y2|
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First Principles: Donath Revisited
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First Principles: Donath Revisited
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Lnetlist = n0 × r0
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Lnetlist = n0 × r0 + n1 × r1
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First Principles: Donath Revisited
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Lnetlist = n0 × r0 + n1 × r1 + n2 × r2
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First Principles: Equivalence of Wire Length

& Wire Flow

Equivalence of Wire Length & Wire Flow

Total Interconnect length = No. of occupied segments/tile × No. of Tiles .
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First Principles: Equivalence of Wire Length

& Wire Flow

Equivalence of Wire Length & Wire Flow

Total Interconnect length = No. of occupied segments/tile × No. of Tiles .

W

W

Figure 4: No. of occupied segments/tile
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First Principles: Equivalence of Wire Length

& Wire Flow

Equivalence of Wire Length & Wire Flow

Total Interconnect length = No. of occupied segments/tile × No. of Tiles .

W

W

Figure 4: No. of occupied segments/tile

Manhattan Grid

Lhops = 2w × B .

w =
Lwire

2B
.
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Evaluation Method

Ù First we calculate the point-to-point distance on the tiling pattern.
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Evaluation Method

First we calculate the point-to-point distance on the tiling pattern.

Ù Next we calculate the Total interconnect length for a given user
netlist < t, p,B >
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Evaluation Method

First we calculate the point-to-point distance on the tiling pattern.

Next we calculate the Total interconnect length for a given user
netlist < t, p,B >

Ù We calculate the Average channel width required
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Evaluation Method

First we calculate the point-to-point distance on the tiling pattern.

Next we calculate the Total interconnect length for a given user
netlist < t, p,B >

We calculate the Average channel width required

Ù We count the no. of switches for that channel width
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Tiling Patterns: Octagonal

(x2, y2)

Dx

Dy

(x1, y1)

Figure 5: Distance Between two points
in an Octagonal grid

Dx = |x1 − x2| , Dy = |y1 − y2|

r = Dx + Dy − Dx Dy ≥ Dx
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Figure 5: Distance Between two points
in an Octagonal grid

Dx = |x1 − x2| , Dy = |y1 − y2|

r = Dx + Dy − Dx Dy ≥ Dx

r = Dy + Dx − Dy Dx ≥ Dy
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Tiling Patterns: Octagonal
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Dx

Figure 5: Distance Between two points
in an Octagonal grid

Dx = |x1 − x2| , Dy = |y1 − y2|

r = Dx + Dy − Dx Dy ≥ Dx

r = Dy + Dx − Dy Dx ≥ Dy

Octagonal Grid
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˛

˛Dx − Dy

˛

˛

´
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Tiling Patterns: Octagonal

w

w

w

w w

w

w

w

Figure 6: No. of switches Required

Octagonal Grid

No. of Switches = CN
2 × w2

No. of Switches = 28 × w2

Octagonal Grid

Lhops = 4w × B .

w =
Lwire

4B
.
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Tiling Patterns: Hexagonal
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Tiling Patterns: Hexagonal
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Tiling Patterns: Hexagonal

Point-to-Point Distance in Hops remains the same across Transformations
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Tiling Patterns: Hexagonal

(x2, y2)

(

x′2, y
′
2

)

(

x′1, y
′
1

)

(x1, y1)

Figure 7: Distance Between two
points in an hexagonal grid

Dx = |x1 − x2| , Dy = |y1 − y2|

r =
1

2

`

Dx + Dy +
˛

˛Dx − Dy

˛

˛

´

(x2 ≥ x1, y2 ≥ y1)

(x2 ≤ x1, y2 ≤ y1)
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Tiling Patterns: Hexagonal
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Figure 7: Distance Between two
points in an hexagonal grid

Dx = |x1 − x2| , Dy = |y1 − y2|
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1
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`

Dx + Dy +
˛

˛Dx − Dy

˛

˛

´

(x2 ≥ x1, y2 ≥ y1)

(x2 ≤ x1, y2 ≤ y1)

= Dx + Dy otherwise
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Tiling Patterns: Hexagonal
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Tiling Patterns: Hexagonal

w

w

w

w

w
w

Figure 8: No. of switches Required

Hexagonal Grid

No. of Switches = CN
2 × w2

No. of Switches = 15 × w2

Hexagonal Grid

Lhops = 3w × B .

w =
Lwire

3B
.
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Comparison

Parameter Square Hexagonal Octagonal

Total Interconnect Length 1 0.85 0.69
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Comparison

Parameter Square Hexagonal Octagonal

Total Interconnect Length 1 0.85 0.69
Average Channel Width 1 0.56 0.35
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Comparison

Parameter Square Hexagonal Octagonal

Total Interconnect Length 1 0.85 0.69
Average Channel Width 1 0.56 0.35
No. of Switches/SwitchBox 1 0.78 0.57
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Figure 9: Generic Hierarchical Gate

Ù arity A: no of branches
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Figure 9: Generic Hierarchical Gate

arity A: no of branches

Ù α : ratio of channel width of a
level to it’s next level
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Figure 9: Generic Hierarchical Gate

arity A: no of branches

α : ratio of channel width of a
level to it’s next level

Ù and wk as the channel width at
level k.

α =
wk+1

wk
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Figure 9: Generic Hierarchical Gate

arity A: no of branches

α : ratio of channel width of a
level to it’s next level

and wk as the channel width at
level k.

α =
wk+1

wk

Ù Point to point distance between
two points between two adjacent
partitions at level k r = (2k + 1)
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Comparison
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Layout Schemes: Hexagonal
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Figure 11: Hexagonal FPGA Layout Scheme
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Layout Schemes: Hexagonal with 45◦ lines

Figure 12: Standard Processes support 45◦ metal lines
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Layout Schemes: Octagonal
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Figure 13: Octagonal FPGA Layout Scheme
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Depopulation Schemes

w w

w2

Figure 14: No. of switches are
more than the Channel Capacity

Ù No. of switches between two channels (W 2) >> Channel Capacity (W )
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Depopulation Schemes

w w

w2

Figure 14: No. of switches are
more than the Channel Capacity

No. of switches between two channels (W 2) >> Channel Capacity (W )

Ù Let’s Depopulate the X-Bar to Disjoint
Switchbox.
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Depopulation Schemes
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Figure 15: Eliminating Unused connections in Shortest
Path
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Figure 16: Eliminating Unused connections in Shortest
Path

Hexagonal Grid

No. of Switches(X-bar) = 15 × w2

No. of Switches(Depopulated) = 9 × w

Octagonal Grid

No. of Switches(X-bar) = 28 × w2

No. of Switches(Depopulated) = 12 × w

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn’t be driving in Manhattan ?) ENST, CNRSApril 5th, 2008 28 / 35



Plan

Intuition

First Principles

Evaluation Method

Tiling Patterns
Octagonal Tiling

Hexagonal Tiling

Hierarchical Tiling

Comparison

Layout Schemes

Depopulation Schemes

True Length Estimation

Conclusion & Future Research

Questions

Efficient Tiling Patterns for Reconfigurable Gate Arrays (or Why you shouldn’t be driving in Manhattan ?) ENST, CNRSApril 5th, 2008 29 / 35



True Length Estimation

Estimated True Length

Tot. Interconnect length(µm) = Av. Length per hop(µm/hop)

×Tot. Interconnect Length in Hops(hops) .
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True Length Estimation

Estimated True Length

Tot. Interconnect length(µm) = Av. Length per hop(µm/hop)

×Tot. Interconnect Length in Hops(hops) .

x µm

Figure 17: Estimation of True
Length in Octagonal grid

Length per hop =
2 × Straight hop + 2 × Diagonal hop

4

Length per hop = 1.207x µm/hop
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True Length Estimation

Estimated True Length

Tot. Interconnect length(µm) = Av. Length per hop(µm/hop)

×Tot. Interconnect Length in Hops(hops) .

x µm

x µm

Figure 17: Estimation of True
Length in Octagonal grid

Length per hop =
2 × Straight hop + 2 × Diagonal hop

4

Length per hop = 1.207x µm/hop

Estimated True Length = 11 × 1.207x

Estimated True Length = 13.377x µm

Actual Length = 13.484x µm
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True Length Estimation

Square Switchbox Area A

Hexagonal Area 0.78 × A

Octagonal Area 0.57 × A

0.88
√

A

0.75
√

A

√
A Length/hop=

√
Aµm/hop

Length/hop= 0.88
√

Aµm/hop

Length/hop= 0.75 × 1.207 ×
√

Aµm/hop

Length/hop= 0.905 ×
√

Aµm/hop

Figure 18: For a given User netlist
< t, p,B >

E(Lsquare ) = 1 × 1 ×
√

A µm

E(LHex ) = 0.85 × 0.88 ×
√

A µm

= 0.748
√

A µm

E(LOctagonal ) = 0.69 × 0.905 ×
√

A µm

= 0.63
√

A µm
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Conclusion

Ù We revisited Rent & Donath for our first principles.
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Conclusion

We revisited Rent & Donath for our first principles.

We established a relationship between interconnect length & interconnect
flow(channel width)

We developed a method to evaluate generic tiling patterns based on these
principles

We derived

Expressions for point-to-point distance in Hexagonal, Octagonal &
hierarchical Gate Arrays
Expressions for Total Interconnect Length & Channel width for each of
them
We compared them assuming X-Bar switchbox.(global routing)
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Conclusion

Ù We have seen possible layout schemes for Hexagonal & Octagonal
Gate Arrays
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Conclusion

We have seen possible layout schemes for Hexagonal & Octagonal
Gate Arrays

We discussed depopulation schemes.

Our future work concerns:

Modification of VPR to incorporate these Gate-Arrays.
P/R Experiments with a set of Benchmarks (QUIP)
Actual CMOS layouts
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Thank You

Thank You & Have a Nice Day
(Author’s Version of the article with big Mathematical fonts is available at

http://comelec.enst.fr/∼chaudhur/Tiles big.pdf)
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