Performance Comparison between Copper, Carbon Nanotube and Optics for On-chip Interconnects

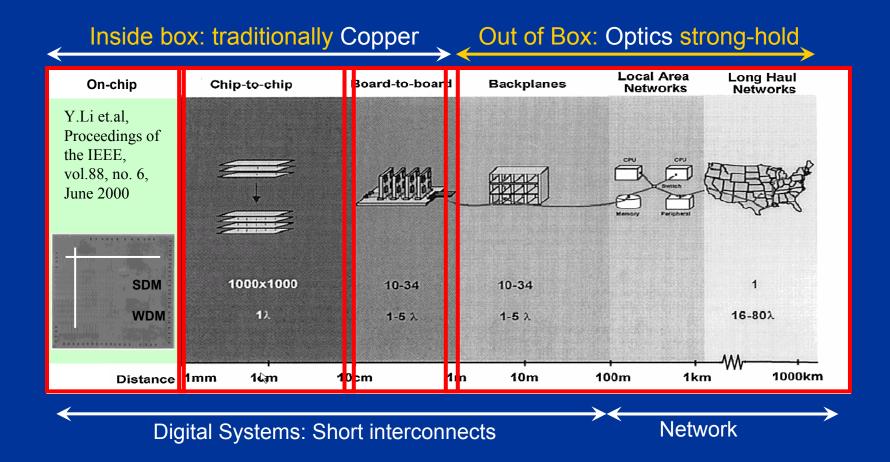
> Mar. 18. 2007 Hoyeol Cho, Kyung-Hoae Koo, Pawan Kapur, and Krishna C. Saraswat

Outline

Motivation

Modeling of Cu/low-K, CNT, and Optics > RLC Modeling of Cu/low-K and CNT

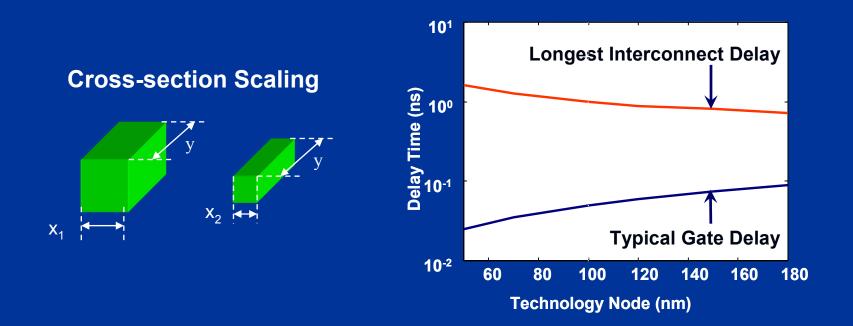
Optical Interconnect Modeling


Performance Comparison

- Primary metrics
 - ✓ Bandwidth density
 - ✓ Latency
 - ✓ Power
- Compound metrics
 - Bandwidth density/Latency/Power

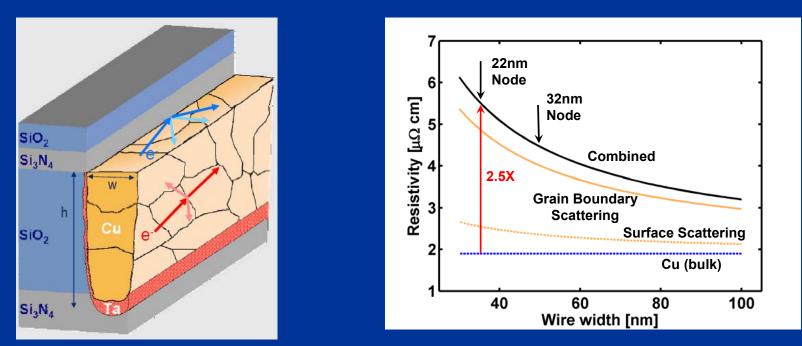
Conclusion

Interconnect Hierarchy



Interconnect level of this talk: On-chip global wires

Limit of On-chip Electrical Interconnect: Latency


On-chip wires are getting slower

Wire delay is deteriorating wrt gate delay with scaling even with low-k materials

Limit of On-chip Electrical Interconnect: Resistance

Based on W. Steinhogl et.al. Phys. Rev. B, 2002

Resistivity increases as wire dimensions and grain size become comparable to the bulk mean free path of electrons

- Grain boundary scattering
- Surface scattering

Limit of On-chip Electrical Interconnect: Repeaters

A long global link w/o Repeaters

 $t_{total} = 0.4 R_w C_w l^2$

Delay (helps enormously)

- Best possible interconnect delay
- Linear with length
- Scales better
- But is it good enough?

Repeaters have power and area penalty: need new interconnect technologies...

With Repeaters

$$t_{total} = 5l\sqrt{r_o C_{mos} R_w C_w}$$
$$= 2l\sqrt{(0.4R_w C_w)t_{FO4}}$$

Alternative Candidates

	Pros	Cons
Optics	 Low loss for longer wire and higher bandwidth Lower power at higher bandwidth and switching activity Wavelength Division Multiplexing 	 ≻ Larger pitch(~0.6µm) → Lower BW density
Carbon Nanotube (CNT)	 > Small device: ~nm diameter > Longer mean free path → Resistance ↓ 	> Power

Imperative to quantify performance metrics of alternative candidates comparing with Cu/low-K

Performance Metrics

Primary Metric	Cu, CNT, Optics	
Bandwidth	Level-off (10~20Gb/s) Design paradigm: Multi-core	
Area	Different pitch \rightarrow BW density	
Latency	Core to core communication	
Power	Budget: hungry at chip level	
Compound Metric	BW density/Latency/Power	

Extensive analysis on performance comparison between Cu, CNT and optics for on-chip levels using primary and compound metrics

Outline

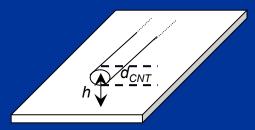
Motivation

Modeling of Cu/low-K, CNT, and Optics

- RLC Modeling of Cu/low-K and CNT
- Optical Interconnect Modeling

Performance Comparison

- Primary metrics
 - ✓ Bandwidth density
 - ✓ Latency
 - ✓ Power
- Compound metrics
 - Bandwidth density/Latency/Power


Conclusion

RLC Model for Single-wall CNT: Capacitances (C_E, C_Q)

$$C_w = \frac{C_E \cdot C_Q}{C_E + C_Q}$$

 \Box Electrostatic Capacitance (C_E)

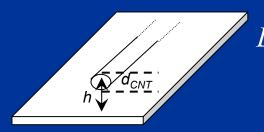
$$f_E = 2\pi\varepsilon / \ln\left(\frac{d_{CNT}}{h}\right)$$

 $0.17 \mu / \mu / \mu / \mu$

Quantum Capacitance (C_o)

$$C_Q = \frac{2e^2}{hv_F} \sim 0.1 fF / \mu m (\sim C_E)$$

[P. J. Burke, Trans. on Nanotechnology, 2002]


The quantum and electrostatic capacitances are in series, and have the same orders of magnitude

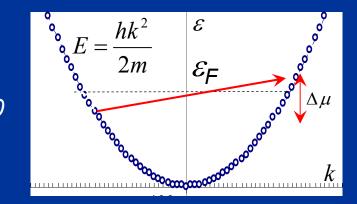
RLC Model for Single-wall CNT: Inductances (L_m, L_k)

$$L_w = L_m + L_k$$

\Box Magnetic inductance (L_m)

$$=\frac{\mu}{2\pi}\ln\left(\frac{d_{CNT}}{h}\right)$$

=1.6nH/mm


\Box Kinetic inductance (L_k)

$$L_k \equiv \frac{h}{2v_F e^2} \sim 16 \,\mu H \,/\,mm$$

[P. J. Burke, Trans. on Nanotechnology, 2002]

4 orders higher magnitude → Inductance effects becomes important

I≠0

Mar. 18, 2007 Hoyeol Cho

RLC Model for Single-wall CNT: Resistance

$$R_{w} = R_{C} + R_{Q} \left(1 + \frac{l}{l_{o}} \right)$$

Contact resistance (R_c)

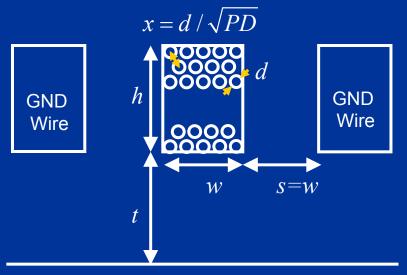
► 120K $\Omega \rightarrow \sim K\Omega$ per nanotube [H. Dai, Applied Phys. A, 2004] Quantum resistance (R_o)

$$R_{Q} = \frac{h}{4e^2} = 6.45K\Omega$$

[P. J. Burke, Trans. on Nanotechnology, 2002]

\Box Wire resistance (R_w)

- linear model [J.Y. Park, Nano Letters, 2004]
- > Good quality CNT: $l_o = 1.6 \mu m$

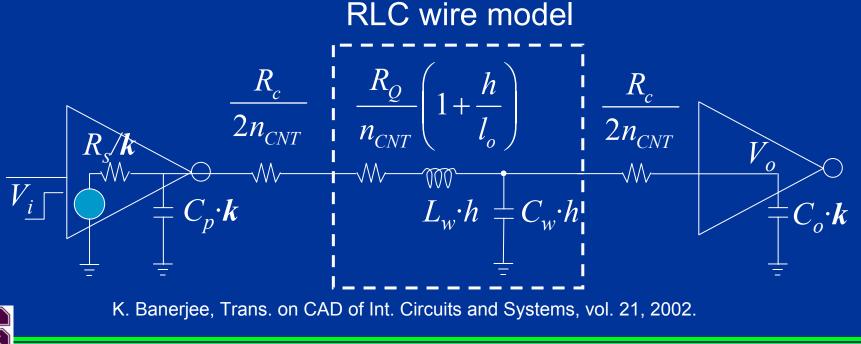

Resistance is linear dependence with wire length multiplied by Quantum resistance

RLC Model for Bundled CNT

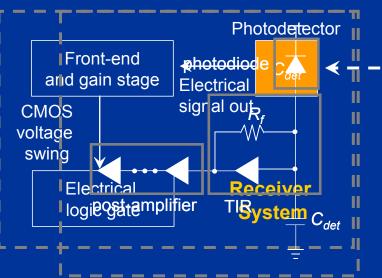
CNT bundle

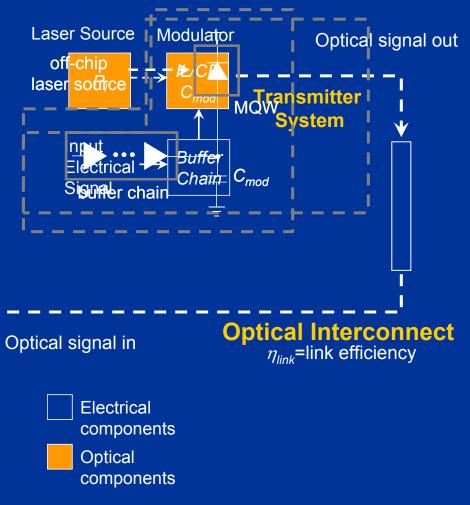
- Same wire dimension with Cu
- Packing density

GND plane


Equiv. RLC for CNT Bundle
$C_{_W} \sim C_{_E}$
$L_{w} \sim L_{k} / 4n + L_{m}$
$R_{c} \sim 0$
$R_{w} = \frac{R_{Q}}{n} (1 + l/l_{o})$

Repeater Model: RLC


RLC model


- > No closed form solution: k (driver size) and h (repeater spacing)
- Newton-Raphson numerical iteration method
- Increase in the inductance ratio to resistance
 - $\checkmark k \downarrow$ and $h \uparrow$
 - the total repeater capacitance reduces resulting in a lower power: inductance effect

Optical Interconnect: Modeling

- Off-chip laser power source with 1.3µm wavelength
- On-chip quantum well modulators/Photodiode
- Trans-impedance receiver (TIR)
- Subsequent amplifier stage

Optical Interconnect: Power Dissipation

Optical Modulator Power (QWM)

- Dynamic power: capacitance of modulator and the driving gates
- Static power: optical absorption in QWs

Receiver Power

- Criteria
 - ✓ Bit rate (BR)
 - ✓ Bit error rate (BER) = 10⁻¹⁵
 - Output voltage swing equal to the supply voltage

Optimize design parameters

Receiver power dramatically decreases with the detector capacitance: P. Kapur, IITC, 2002

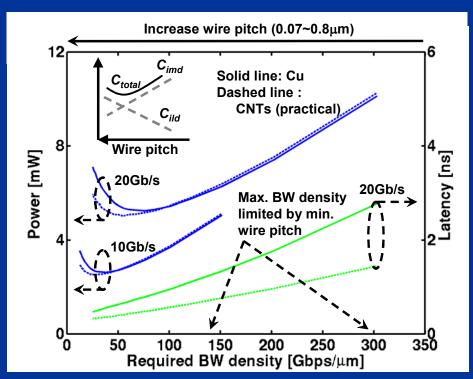
✓ Device Capacitance: $50 \text{fF} \rightarrow 10 \text{fF}$

Outline

Motivation

Modeling of Cu/low-K, CNT, and Optics

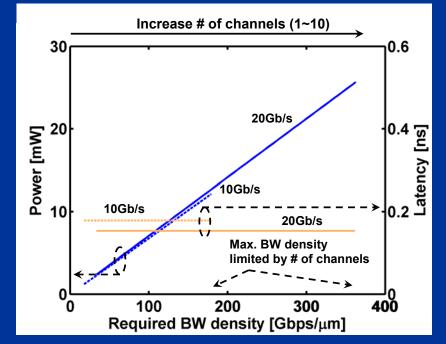
- RLC Modeling of Cu/low-K and CNT
- Optical Interconnect Modeling


Performance Comparison

- Primary metrics
 - ✓ Bandwidth density
 - ✓ Latency
 - ✓ <u>Power</u>
- Compound metrics
 - Bandwidth density/Latency/Power

Conclusion

Performance Comparison: Power and Latency for Cu/low-K and CNT

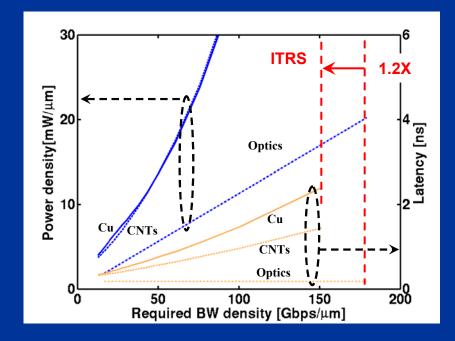

Wire length=10mm, 22nm technology node

- **BW density** limited by Min. pitch of ITRS: ~150Gbps/ μ m for f_{ck} =10Gbps
- Further limited by repeater area

Power: Wide wire pitch exhibits inductance effect

CNT have 1.5X lower latency compared to Cu/low-K

Performance of Optics: Power and Latency



Wire length=10mm, $C_{det}=C_{mod}=10$, 22nm technology node

- □ Max. BW density limited by # of channels > Cu, CNTs @10 channels
- Power: linear with BW density
- Latency: constant

Performance Comparison: Power density and Latency

Wire length=10mm, CNT: *mfp*=0.9µm, *PD*=1/3, $C_{del}=C_{mod}$ =10fF, f_{ck} =10Gbps, 22nm technology node

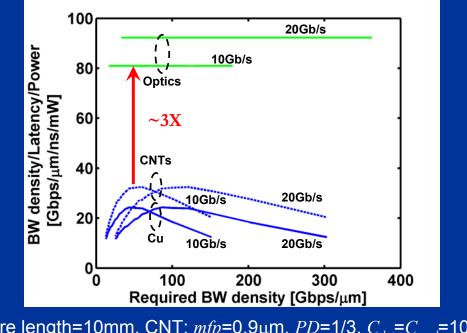
Power density: Fundamentally low power for optics
 Latency: Optics ~4X faster than CNTs, CNTs ~1.5X faster than Cu
 BW Density: Optics~1.2X higher than CNTs and Cu

Outline

Motivation

Modeling of Cu/low-K, CNT, and Optics

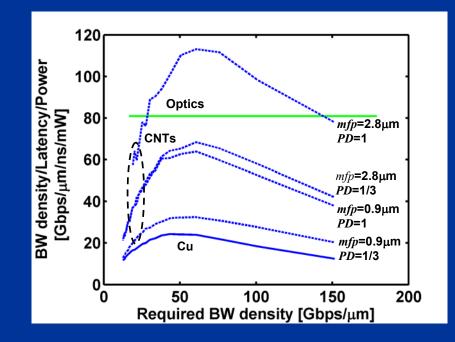
- RLC Modeling of Cu/low-K and CNT
- Optical Interconnect Modeling


Performance Comparison

- Primary metrics
 - ✓ Bandwidth density
 - ✓ Latency
 - ✓ Power
- Compound metrics
 - Bandwidth density/Latency/Power

Conclusion

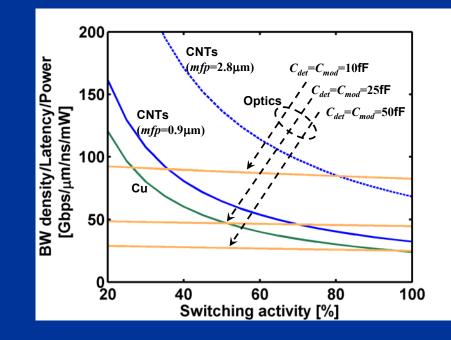
Performance Comparison: Compound metric



Wire length=10mm, CNT: *mfp*=0.9 μ m, *PD*=1/3, *C*_{det}=*C*_{mod}=10fF, f_{ck} =10Gbps, 22nm technology node

Optics ~3X higher CNTs @Maximum
 CNT, Cu: optimum wire pitch, maximizing metric: 3~5×W_{min}

Impact of CNT Parameters on Compound Metric


Wire length=10mm, CNT: *mfp*=0.9 μ m, *PD*=1/3, *C*_{det}=*C*_{mod}=10fF, f_{ck} =10Gbps, 22nm technology node

CNTs: ~1.4X better performance for Improving both *mfp* and *PD*

□ Optics: device capacitances <10fF → enable optics have better performance</p>

Impact of Switching Activity on Compound Metric

Wire length=10mm, CNT: *mfp*=0.9µm, *PD*=1/3, $C_{del}=C_{mod}$ =10fF, f_{ck} =10Gbps, 22nm technology node

Cu, CNTs: dynamic power $\propto SA$ whereas Optics: static power $\sim SA$

- > Optics (10fF) vs. CNTs (*mfp*=0.9 μ m): cross-over *SA* ~ 40%
- > Optics (10fF) vs. CNTs ($mfp=2.8\mu$ m): cross-over $SA \sim 80\%$

Optics is favorable for high SA

Outline

Motivation

Modeling of Cu/low-K, CNT, and Optics

- RLC Modeling of Cu/low-K and CNT
- Optical Interconnect Modeling

Performance Comparison

- Primary metrics
 - ✓ Bandwidth density
 - ✓ Latency
 - ✓ Power
- Compound metrics
 - Bandwidth density/Latency/Power

□ <u>Conclusion</u>

Conclusion

Quantification of the circuit models (R, L, and C) of Cu and CNT

Comparison with primary metrics

- Power: CNTs (practical) ~ Cu < Optics</p>
- Latency: Optics < CNTs (practical) < Cu</p>

Comparison with compound metric: BW density/latency/power

Optics > CNTs (practical) > Cu

Evaluation of the impact of device/material/system parameters

- > System: global clock frequency (f_{ck}), SA
- Material (CNT): *mfp* and *PD*
- Device Capacitance for Optics

Comparison framework gives the insight to system/device engineers which interconnect technology is proper to their system application

