

Synthetic Traffic Generation: a Tool for Dynamic Interconnect Evaluation

W. Heirman, J. Dambre, J. Van Campenhout ELIS Department, Ghent University, Belgium

Sponsored by IAP-V PHOTON & IAP-VI photonics@be, Belgian Science Policy Office

Outline

- Introduction
- Synthetic traffic generation
- Results
- Conclusions

Distributed shared-memory architecture

Network is part of the memory hierarchy

=> Reconfigurable network?

Reconfiguration implementation: base network + extra reconfigurable links

other 'dynamic networks': e.g. per-link voltage scaling

Evaluate networks with synthetic traffic

- Mimics the behavior of real traffic
- But without the computational cost of modeling application, OS, CPUs, caches, ...

We need better synthetic traffic

Reconfiguration exploits low-frequency dynamics in the network traffic

- Trace-driven simulation using static traffic patterns (uniform, hotspot, shuffle, ...) won't do!
- Full execution-driven simulation (traffic is driven by application: FFT, weather forecast, database) is too slow!

Outline

- Introduction
- Synthetic traffic generation
- Results
- Conclusions

Realistic synthetic traffic generation

Preserve packet-interdependencies by using packet groups

Packets are processed/generated in groups, corresponding to one memory operation each

Distribution of # involved nodes

Reuse distance of home nodes: introduce locality

Computation or 'think' time

Models time delay between subsequent requests

Computation time

Outline

- Introduction
- Synthetic traffic generation
- Results
- Conclusions

Simulations

- Simulation platform: Simics, providing *functional* multiprocessor simulation
 - 16 UltraSPARC III processors
 - SPLASH-2 parallel benchmarks
- Timing model:
 - Computes the latency for each memory access
 - Models caches, interconnection network
 - Base network: 4x4 torus
 - Extra links: configurable number, fan-out, reconfiguration interval

Simulations

Once per benchmark:

Simulate execution of the benchmark, base network only, measuring traffic profile $^{\left(1\right)}$

For each set of extra link parameters:

- Execution-driven simulation with reconfigurable network ⁽²⁾
 → "correct" result
- Trace-driven simulation using (simplified) traffic from (2)
 → tracing error
- Trace-driven simulation using (simplified) traffic from (1)
 → traffic-dependence on network
- Trace-driven simulation using synthetic traffic
 - → total error

Several parameters can be measured

Detailed view of "average packet latency"

18

Variability for shorter traces

19

Outline

- Introduction
- Synthetic traffic generation
- Results
- Conclusions

Conclusions

- Synthetic traffic generation was extended to
 - shared-memory cache-coherence protocols,
 - reconfigurable networks
- Good relative accuracy for different network topologies
- Much less computationally expensive (x10), even more so for shorter traces (x100)
- Reproducibility equal to or better than execution-driven simulations

