#### **Statistical Circuit Optimization Considering Device and Interconnect Process Variations**

I-Jye Lin, Tsui-Yee Ling, and Yao-Wen Chang

The Electronic Design Automation Laboratory Department of Electrical Engineering National Taiwan University March 17, 2007



# Outline

Introduction Deterministic Algorithm Statistical Algorithm Experimental Results Conclusions

# Outline

#### Introduction

Deterministic Algorithm Statistical Algorithm Experimental Results Conclusions

#### **Interconnect Process Variation**

Interconnect delay and reliability highly affect VLSI performance.

The variability of interconnect parameters will raise up to 35%.

- Sirvastava et al., Springer, 2005.

The worst-case corner models cannot capture the worst-case variations in interconnect delay.

\_ Liu et al., DAC 2000

The interconnect optimization guided by statistical analysis techniques has become an inevitable trend.

- Visweswariah, SLIP 2006

#### **Previous Work in Statistical Optimization**

Statistical gate sizing with timing constraints using Lagrangian Relaxation.

- Choi et al.," DAC 2005.

Statistical power minimization by delay budgeting using second order conic programming.

– Orshansky et al., DAC 2005.

Statistical gate sizing using geometric programming

– Patil et al., ISQED 2005.

No statistical optimization work consider both interconnect and device sizing.

#### **Comparison with Previous Work**

|                 | Orshansky's work | Our work                  |  |  |
|-----------------|------------------|---------------------------|--|--|
|                 | (DAC 2005)       |                           |  |  |
| Sizing variable | Gate only        | Gate and wire             |  |  |
| Delay Model     | Linear model     | Elmore delay model        |  |  |
|                 | (linear term)    | ( <b>nonlinear</b> term)  |  |  |
| Objective       | Power            | Area                      |  |  |
| Constraint      | Timing           | Power, timing,<br>thermal |  |  |

Due to the nonlinear term introduce by the Elmore delay model, the optimization using both gate and wire sizing will be much harder to solve.



Delay model and timing constraint used in previous work in DAC 2005:  $a_i \ge a_j + d_i^0 + d_i$  linear terms!

 $- d_i^0$  = delay due to the sizing for maximum slack

 $- d_i$  = slack added to node i due to the loading

# **Statistical Circuit Optimization with SOCP**

0.5

#### Second-order conic programming (SOCP)



- Convex optimization
- Theoretical runtime O(N<sup>1.3</sup>)
- Orshansky (DAC 2005), Davoodi (DAC 2006)

Second-order conic constraint:

 $\|\underline{A}_{i}x + \underline{b}_{i}\|_{2} \leq c_{i}^{T}x + d_{i}$  ApproximationLinear terms!
Nonlinear (quadratic) terms are not applicable!

 $x_1$ 

#### **Approximation Method**

Fix the gate size in the timing constraint.

 Reduce the timing constraint from quadratic order to linear order.

Approximate the gate sizes by a two-stage flow.

- Iteratively reduce the approximation errors.
- The flow is similar to Sequential Linear Program (SLP).



#### **Our Contributions**

The first work of statistical optimization on circuit interconnect and devices

- Previous work considers only circuit devices (gates).
- Statistical optimization for considering both interconnect and devices is much harder.

The first work that statistically optimizes the area with *thermal-* and *timing-constrained* parametric yields

Most existing statistical optimization considers only timing.

The first work capable of analytically transforming the statistical RC model into an SOCP

Previous work uses linear delay model

# Outline

Introduction

#### **Deterministic Algorithm**

Statistical Algorithm Experimental Results Conclusions

#### **Timing Constraint**



# of paths may grow exponentially to the circuit size. To reduce problem size, we distribute the timing information to each node.

$$\begin{array}{ll} D_i \leq a_i & i=1,...,s \ /* \ primary \ inputs * / \\ \\ a_j + D_i \leq a_i & i=s+1,...,n+s \ and \ \forall j \in input(i) \\ \\ \\ a_j \leq D^B & j \in input(m) \ /* \ primary \ outputs * / \end{array}$$

Electron Migration (EM) lifetime reliability of metal interconnects is governed by the well-known Black's equation: TTF: time-to-fail period

A\* : a constant

: average current density

specific metal temperature

: activation energy KB : Boltzmann's constant.

Tm: metal temperature

$$TTF = A^{\star} \cdot j^{-n} \cdot exp(\frac{Q}{k_B T_m}),$$

The design is reliable when

$$\frac{j_{avg}^2}{exp\left(\frac{Q}{k_BT_m}\right)} \leq \frac{j_0^2}{exp\left(\frac{Q}{k_BT_{ref}}\right)}.$$

$$\begin{bmatrix} j_0: \text{ specific current density} \\ T_{ref}: \text{ specific metal temper} \\ T_{ref}: \text{ specific metal temper} \\ \hline T_{ref}: \text{ specific metal temper} \\ \hline T_m \leq \frac{Q \cdot T_{ref}}{Q - 2K_BT_{ref}(\ln j_0 - \ln j_{avg})} = T^{B'}.$$

$$T_m = \Delta T_{self-heating} + T_{environment}$$

#### **Average Temperature of the Chip**

The average temperature of the chip,  $T_{avg}$ , can be estimated by:

$$T_{avg} = T_{air} + R_n(\underbrace{P_{tot}}_{A})$$
 Power



– Banerjee et al., ISPD 2001.

Need to constrain chip's temperature under a reasonable bound during the optimization:

$$\alpha_i c_i \le P_i^{B'}, \quad P_i^{B'} = P_i^B / V_{DD}^2 f$$

- For simplicity, consider the dynamic power consumption only.
- $P_i^{B:}$  the power bound of the gate i
- $-c_i$ : the downstream capacitance of the gate I
- $-\alpha_i$ : switching activity of component *I*

#### **Deterministic Formulation**



*f:* working frequency;  $\alpha_i$ : switching activity of component *I*;  $C_i$ : load capacitance of component *I*;  $\omega$ : path in the path set  $\Omega$ .

# Outline

Introduction Deterministic Algorithm Statistical Algorithm Experimental Results Conclusions Introduce two process parameters as the variation sources: Inter-layer dielectric (ILD) thickness (H), and metal thickness (T).

R and C can be approximated by the first-order Taylor expression:

$$R = R_{nom} + a_1 \Delta T,$$
  

$$C = C_{nom} + b_1 \Delta T + b_2 \Delta H$$

 $R_{nom}/C_{nom}$ : nominal value of R/C  $\Delta T/\Delta H$ : random deviation of metal thickness/ILD thickness

 a1, b1, b2 are sensitivities calculated by the differential differentiation of:

$$R = \frac{\rho}{WT},$$

$$\frac{C_{gnd}}{\epsilon} = \frac{W}{H} + 3.28 \left(\frac{T}{T+2H}\right)^{0.023} + \left(\frac{S}{S+2H}\right)^{1.16}$$

– Srivastava et al., Springer 2005.

Assume T and H are Gaussian, the variability magnitude of R and C can easily be calculated by:

$$\sigma_R^2 = \boldsymbol{a}_1^2 \sigma_T^2$$
$$\sigma_C^2 = \boldsymbol{b}_1^2 \sigma_T^2 + \boldsymbol{b}_2^2 \sigma_H^2$$

Apply the *interconnect delay variation metric* to calculate the variability of the product of R and C.

- Well captured by a normal distribution with 1.2% average error of the mean delay and 3.8% average error of the standard deviation.
- Blaauw et al., DAC 2004.

#### **Statistical Formulation**



 $-\delta/\zeta/\eta$ : Thermal/Timing/Power yield constraint

#### **Transformation into SOCP**

**Theorem:** Given independent Gaussian random vectors  $a_i$  and bound vectors  $b_i$ , the parametric yield ( $\eta$ ) problem is as follows:

Minimize

$$\sum x_i$$

subject to  $Prob(a_i^T x_i \le b_i) \ge \eta$ , the problem can be reformulated as an SOCP:

Minimize

$$\sum x_i$$

subject to

$$\left(\bar{a}_{i}^{T}x_{i}\right) + \Phi^{-1}\left(\eta\right)\left(x^{T}\Sigma_{i}x\right)^{1/2} \leq b_{i}.$$

 $- \Phi^{-1}$ : the cumulative density inverse function Boyd and Vandenberghe, Cambridge, 2004. The EDA Laboratory

#### **Transformation Flow**



#### **Thermal & Power Constraints in SOCP Form**

Thermal constraint:

$$\mathcal{P}(T_{mi} \leq T_i^B) \geq \delta$$

$$\bar{T}_{mi} + \phi^{-1}(\delta) \sqrt{\sigma_1^2 x_w^2 + \sigma_2^2 \frac{1}{x_w^2} + \sigma_3^2 + \sigma_4^2} \leq T_i^B$$
Power (Thermal distribution) constraint:
$$\mathcal{P}(\alpha_i c_i \leq P^{B'}) \geq \eta$$

 $\alpha_i \bar{c_i} + \phi^{-1}(\eta) \sqrt{\sigma_5^2 \sum_{i=s+1}^{n+s} (x_i^2)} \le P^{B'},$ 

,

#### **Timing Constraint in SOCP Form**



The EDA Laboratory

#### **Statistical Problem Formulation using SOCP**

#### $\mathtt{P}: Minimize$

|                            | $\sigma_1$                                           | $\sigma_2$                                      | $\sigma_3$                                                  | $\sigma_4$          |                           | $\sigma_5$                |
|----------------------------|------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|---------------------|---------------------------|---------------------------|
| $\sum n+s$ 1 m             | $\sigma_{\rho_m}B_0^2A_1^2$                          | $\sigma_{\rho_m}B_1^2A_0^2$                     | $\sigma_{\rho_m}B_1^2A_1^2$                                 | $\sigma_{\rho_m} B$ | $R_0^2 A_0^2$             | $\alpha_i^2 \sigma_{c_g}$ |
| $\sum_{i=s+1} \iota_i x_i$ | $\sigma_6$                                           | $\sigma_7$                                      | $\sigma_8$                                                  |                     | $\sigma_9$                |                           |
|                            | $\sigma_{\left(r_{j}\right)\left(c_{w}l_{w}\right)}$ | $\sigma_{\left(r_{j}\right)\left(c_{i}\right)}$ | $\sigma_{(r_w l_w)\left(\frac{\sigma_{c_w l_w}}{2}\right)}$ |                     | $\sigma_{(r_w l_w)(c_i)}$ |                           |

 $subject \, to$ 

$$\bar{T}_{mi} + \phi^{-1}(\delta) \sqrt{\sigma_1^2 x_{mi}^2 + \sigma_2^2 \frac{1}{x_{mi}^2} + \sigma_3^2 + \sigma_4^2} \le T_i^B,$$
Thermal constraint

$$a_j + \bar{D}_i + \phi^{-1}\left(\zeta\right) \sqrt{\sigma_6^2 x_w^2 + \sigma_7^2 + \sigma_8^2 + \frac{\sigma_9^2}{x_w^2}} \le a_i,$$
 Timing constraint

$$\alpha_i \bar{c}_i + \phi^{-1}(\eta) \sqrt{\sigma_5^2 \sum_{i=s+1}^{n+s} (x_i^2)} \le P^{B'},$$

#### **Power constraint**

$$L_i \le x_i \le U_i, \ \forall s+1 \le i \le n+s.$$

NTUEE

The EDA Laboratory

#### **Program Flow**



# Outline

Introduction Deterministic Algorithm Statistical Algorithm Experimental Results Conclusions

#### **Experimental Setup**

| Circuit | Circuit Size     |       |        |  |  |  |  |
|---------|------------------|-------|--------|--|--|--|--|
| Name    | #Gate            | #Wire | #Total |  |  |  |  |
| c17     | 11               | 12    | 23     |  |  |  |  |
| c432    | 122              | 230   | 352    |  |  |  |  |
| c499    | <b>c499</b> 246  |       | 642    |  |  |  |  |
| c880    | 256              | 230   | 486    |  |  |  |  |
| c1355   | 297              | 555   | 852    |  |  |  |  |
| c1908   | <b>c1908</b> 201 |       | 537    |  |  |  |  |
| c2670   | <b>c2670</b> 499 |       | 1253   |  |  |  |  |
| c3540   | <b>c3540</b> 429 |       | 1450   |  |  |  |  |
| c5315   | <b>c5315</b> 927 |       | 2719   |  |  |  |  |
| c6288   | 1298             | 3596  | 4894   |  |  |  |  |

Implemented in C++ & applied the MOSEK optimization tool to solve it.

Tested on the commonly used ISCAS85 benchmark circuits in this area.

Used Design Compiler & Astro with UMC 0.18<sup>1</sup>m technology library to synthesize and place the circuits.

#### **Experimental Results**

Achieve 51%, 39%, and 26% area reductions for 70%, 84.1%, and 99.9% yield constraints, respectively.

Avg. / Max. # of the running iterations: 5.6 / 10

| ſ | Circuit | Deterministic |                       |                      | <b>70%</b> yield |                 |                       |                      |  |
|---|---------|---------------|-----------------------|----------------------|------------------|-----------------|-----------------------|----------------------|--|
|   | name    | area (µm²)    | Runtime<br>/ ite. (s) | Total<br>runtime (s) | area (µm²)       | Area<br>improv. | Runtime<br>/ ite. (s) | Total<br>runtime (s) |  |
| ſ | c17     | 7160          | 0.06                  | 0.6                  | 2892             | 59.61%          | 0.09                  | 0.36                 |  |
| ſ | c432    | 47752         | 0.24                  | 1.21                 | 21543            | 54.89%          | 0.83                  | 4.15                 |  |
| ſ | c499    | 127103        | 0.41                  | 2.07                 | 56957            | 55.19%          | 2.41                  | 9.62                 |  |
| Ī | c880    | 152804        | 0.37                  | 1.11                 | 38346            | 74.91%          | 1.40                  | 13.96                |  |
| ſ | c1355   | 174896        | 0.58                  | 5.79                 | 84076            | 51.93%          | 3.87                  | 19.33                |  |
| ſ | c1908   | 96968         | 0.33                  | 3.26                 | 44350            | 54.26%          | 2.79                  | 5.57                 |  |
| I | c2670   | 275967        | 0.74                  | 7.39                 | 121065           | 56.13%          | 7.32                  | 14.64                |  |
| ſ | c3540   | 362409        | 1.10                  | 11.03                | 146519           | 59.57%          | 7.43                  | 22.29                |  |
| ſ | c5315   | 913522        | 1.88                  | 13.18                | 727853           | 20.30%          | 10.43                 | 31.28                |  |
| I | c6288   | 1455730       | 5.23                  | 15.69                | 1100120          | 24.43%          | 70.56                 | 352.78               |  |
| N | Avg.    |               |                       |                      |                  | 51.12%          |                       |                      |  |

Timing constraint error bound: 2%

#### Experimental Results of 84.1% and 99.9% yield

The lower the yield constraints, the better the area optimization. All constraints (timing, power, thermal) are met.

| Circuit |            | 84.1%           | yield                 |                      | <b>99.9%</b> yield |                 |                       |                      |
|---------|------------|-----------------|-----------------------|----------------------|--------------------|-----------------|-----------------------|----------------------|
| name    | area (µm²) | Area<br>improv. | Runtime<br>/ ite. (s) | Total<br>runtime (s) | area (µm²)         | Area<br>improv. | Runtime<br>/ ite. (s) | Total<br>runtime (s) |
| c17     | 3394       | 52.60%          | 0.09                  | 0.6                  | 3460               | 51.68%          | 0.09                  | 0.47                 |
| c432    | 27860      | 41.66%          | 1.26                  | 7.48                 | 29179              | 38.89%          | 0.80                  | 2.41                 |
| c499    | 57758      | 54.56%          | 2.11                  | 8.43                 | 89148              | 29.86%          | 1.54                  | 4.61                 |
| c880    | 66420      | 56.53%          | 2.91                  | 7.82                 | 107349             | 29.75%          | 1.54                  | 15.41                |
| c1355   | 147397     | 15.72%          | 2.11                  | 19.03                | 169347             | 3.17%           | 2.29                  | 22.9                 |
| c1908   | 65020      | 32.95%          | 1.56                  | 12.48                | 70830              | 26.96%          | 1.38                  | 13.57                |
| c2670   | 161426     | 41.51%          | 2.93                  | 5.85                 | 248474             | 9.96%           | 3.47                  | 24.32                |
| c3540   | 169331     | 53.28%          | 5.57                  | 22.27                | 176715             | 51.24%          | 5.23                  | 15.70                |
| c5315   | 735838     | 19.45%          | 9.24                  | 36.95                | 884514             | 3.18%           | 7.16                  | 28.65                |
| c6288   | 1109090    | 23.81%          | 69.74                 | 348.71               | 1291240            | 11.30%          | 82.32                 | 411.63               |
| Avg.    | (          | 39.21%          |                       |                      | (                  | 25.60%          |                       |                      |

#### **Delay, Power and Temperature Performance**

Though the delay and the maximum metal temperature are increased, they all meet the given bounds.

Fully utilized the constraint bound to get the best optimization results.

| Circuit    |         | Delay (ns) |         | Power  | r (mW) | Max T <sub>increase</sub> () |       |
|------------|---------|------------|---------|--------|--------|------------------------------|-------|
| Name       | Bound   | Before     | After   | Before | After  | Before                       | After |
| c17        | 36.82   | 22.19      | 32.21   | 2.02   | 1.35   | 8.19                         | 10.05 |
| c432       | 247.65  | 154.59     | 136.62  | 22.96  | 12.59  | 6.97                         | 23.46 |
| c499       | 186.13  | 153.79     | 135.32  | 56.10  | 35.23  | 7.20                         | 27.20 |
| c880       | 253.43  | 208.84     | 170.15  | 64.03  | 43.44  | 7.26                         | 19.69 |
| c1355      | 274.55  | 203.45     | 241.45  | 78.56  | 67.24  | 7.37                         | 27.47 |
| c1908      | 222.91  | 161.09     | 136.11  | 43.32  | 28.36  | 7.09                         | 31.78 |
| c2670      | 290.84  | 176.66     | 229.94  | 103.81 | 98.69  | 8.88                         | 22.72 |
| c3540      | 507.80  | 308.59     | 245.85  | 143.14 | 72.65  | 8.25                         | 14.03 |
| c5315      | 445.58  | 313.52     | 421.54  | 365.65 | 355.45 | 7.78                         | 19.55 |
| c6288      | 1333.91 | 913.33     | 1148.41 | 661.62 | 513.14 | 7.35                         | 11.62 |
| Comparison |         | 1          | 1.13    | 1      | 0.80   | 1                            | 2.72  |

# Outline

Introduction Deterministic Algorithm Statistical Algorithm Experimental Results Conclusions

#### Conclusions

Presented the first statistical work for area minimization under thermal and timing constraints by gate and wire sizing.

Obtained much better results than those of the deterministic method.

Formulated statistical RC model by SOCPs which can be solved efficiently and effectively.

- Used more accurate delay model (Elmore delay model)
- Solved the problem by a two-stage approximation flow
  - Nonlinear terms are not applicable to SOCP

# Thank You

#### **Backup Slides**

#### **Temperature Distribution**

Applying the Finite Difference Method (FDM), we can divide the whole chip into *m* mesh nodes and calculate each node's temperature by

$$G_{2}T_{P} = \begin{bmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,m} \\ g_{2,1} & g_{2,2} & \cdots & g_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ g_{m,1} & g_{m,2} & \cdots & g_{m,m} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \\ \vdots \\ T_{m} \end{bmatrix} = \begin{bmatrix} P_{1} \\ P_{2} \\ \vdots \\ P_{m} \end{bmatrix} = P_{P}$$



– Chapman, "Heat Transfer," New York: Macmillan, 1984 Vol., 4<sup>th</sup> Ed.,

#### **Temperature Dependent Delay**

An inseparable aspect of electrical power distribution and signal transmission through the interconnects Resistance is dependent of Temperature

$$r(x) = \rho_0 (1 + \beta \cdot T(x))$$

- $\rho_0$ : the resistance per unit length at reference temperature
- $-\beta$ : the temperature coefficient of resistance (1/°C)

#### **Interconnect Temperature Calculation**

#### The interconnect temperature is given by

$$T_m = \Delta T_{self-heating} + T_{environment}$$

$$= I_{rms}^{2} \cdot R \cdot \theta_{int} + T_{environment}$$
$$= \frac{\sigma V_{cross}^{2} t_{ox} t_{m}}{K_{ox} l^{2} R_{m}} \cdot \frac{x_{i}}{x_{i} + \phi t_{ox}} + T_{environment}$$

 $x_i$ : wire width

 $\theta_{\text{int}}$  : the thermal impedance of the interconnect line to the chip

 $\sigma$ : duty cycle

 $V_{cross}$ : cross voltage of wire

 $t_{ox}$ : the total thickness of the underlying dielectric

 $t_m$ : the thickness of the wire

 $K_{ox}$ : the thermal conductivity

/: wire length

 $R_m$ : the temperature dependent unit resistance

 $\boldsymbol{\psi}$  : the heat spreading parameter

NTUEE

Not linear functions

Least Square Estimator

#### Least Square Estimator (LSE)

Least squares solves the problem by finding the line for which the sum of the square deviations (or residuals) in the d direction (the noisy variable direction) are minimized.

- Apply Cramer Rule to find the A<sub>1</sub> and A<sub>0</sub>, which minimizes the square deviations



#### **Approximation for Thermal Constraint**

Let N = 5 and pick five sizes of xi, we can approximate the thermal constraint by Least Square Estimator (LSE).

– Banerjee et al., DAC 1999

