Tutorial on Congestion Estimation

Taraneh Taghavi Foad Dabiri
Ani Nahapetian Majid Sarrafzadeh

Embedded and Reconfigurable Systems Lab
Computer Science Department
University of California, Los Angeles

Invited Talk, SLIP Workshop March 17, 2007
Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion
Motivation

- To achieve more efficient designs => combining front-end floorplanning and physical placement.
- The total wirelength affects three major parameters:
 - Chip size
 - Clock frequency
 - Power dissipation.
- Interconnect length is a measure of the quality of the placement
- accurate predictions of circuit properties are necessary to limit the vast search space
Motivation

New wirelength and congestion prediction methods are needed:

- Increase in size and sophistication of circuits
- Decrease in physical feature size
- Presence of IP blocks
 - Soft IP
 - Hard IP
- Accurate prediction help improve
 - floorplanning
 - Placement
 - routing
Integrated WL and Cong. Prediction

- Minimizing the total routed wirelength a fundamental goal
- In the presence of IP blocks, alleviating congestion after placement may result in an abrupt increase in wirelength
 - Congestion needs to be estimated early enough
- Internal routing demand is well-correlated with the length of interconnects
 - Congestion estimation needs the information of wirelength
- Detour around the congested area with no IP blocks.
 - Wirelength estimation may need to know the congestion map of the circuit
- Congestion and wirelength estimation are dependent
Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion
WL Estimation: Individual Net

Half Perimeter Bounding Box

- Optimal solution for 2-pin and 3-pin nets
- Lower bound for nets with higher degree.
- However, it can significantly underestimate wirelength for higher-degree nets.
- Net weighting technique to scale up the HPWL estimation.
WL Estimation: Individual Net

Minimum Spanning Tree

- A spanning tree \(T = \{V_T, E_T\} \) of a graph is a sub-graph \(T \) of \(G \), where \(T \) is a tree (no cycles) and such that \(V_T = V \) and \(E_T \subset E \).
- MST = a minimum weight spanning tree over a weighted graph
- Can produce good wirelength estimation in reasonable amount of time.
- Best Time complexity = \(O(n \log(n)) \)
- Simple \(O(n^2) \) time implementation of Prim’s algorithm is usually used
WL Estimation: Individual Net

Rectilinear Steiner Minimal Tree

- Given a set \(P \) of \(n \) points, find a set \(S \) of Steiner points such that \(MST(P \cup S) \) has the minimum cost.
- Optimal RSMT can always be constructed based on the Hanan grid.
 - the length of an edge in the Hanan grid is equal to distance
- RSMT is NP complete
- Good heuristic: Iterative 1-steiner RSMT
Rent’s Rule

- Base for most of WL estimation methods
- Empirical power law, $T = AC^P$
- $A =$ Rent coefficient
- $P =$ Rent exponent
 - Higher rent exponent \rightarrow Higher complexity
- Rent exponent range : $0 \leq P \leq 1$
 - Regular arch. (RAM) : $P = 0.5$
 - Complex arch. (VLSI circuits) : $P = 0.75$
 - Random logic : $P = 1$
 - Long chain of logic : $P = 0$
Rent’s Rule

- T : Terminals per partition
- C : Cells per partition
 - T/C Terminals per cell
 - $\Delta T = (T/C) \Delta C$
 - Small ΔT, ΔC
 - $dT = (T/C) dC$
 - Results in $T = AC$
 - $A = \text{Avg. no. of Terminals}$

- Placement optimization level
 - T/C Terminals per cell
 - $\Delta T = P(T/C) \Delta C$
 - Small ΔT, ΔC
 - $dT = P(T/C) dC$
 - Results in $T = AC^P$

$Ignores$ $optimization$ $level$

$P = 0.66$

$Ignores$ $optimization$ $level$
Rent’s Rule Extraction

- Partitioning
- Coarse placement
- Log-Log plot of external terminals vs. avg. no. of cells
- Rent exponent: slope of the regression line

\[\log(T) = \log(A) + P \log(K) \]
Donath WL Estimation Method

- Hierarchical estimation
 - Partition into 4 sub-circuits.
 - At each level of hierarchy,
 - n_h: Number of interconnections
 - L_h: Average length of interconnections
 - Partitioning satisfies the Rent’s rule.

- Drawback:
 - Ignores IP Blocks
Davis WL Estimation Method

- Derivation of wirelength distribution
- Recursively applying Rent's rule
 - Stochastic WL distribution of a single gate
 - Remove it from the system
 - Repeat process for other gates
 - Superimpose WL distributions
- Drawbacks
 - Complex equations
 - Ignores IP Blocks
Non-Uniform Probability Distribution

Why Overestimate in Donath Method?

- Uniform probability distribution
- Optimal placement behavior
 - Keep connected cells closer to each other
 - More short wires than long wires
- Solution: Non-uniform probability distribution
 - Advantage: Accurate estimation
 - Disadvantage: Complex equations
Non-Uniform Probability Distribution

- Donath hierarchical scheme
 - Treat each level of hierarchy independently
 - Uniform probability distribution for terminals
- Optimal placement behavior
 - More terminals at the border
- Define:
 - $q(l)$: Occupying probability
 - $q'(l) \approx l^{-\left(4-2P\right)}$
Non-Uniform Probability Distribution

- Conservation of terminals
 - Internal terminals
 - External terminals

\[T_{A \rightarrow C} = T_{AB} + T_{BC} - T_B - T_{ABC} \]

- Applying Rent’s rule

\[T_{A \rightarrow C} = t \left[(1 + C_B)^p + (C_B + C_C)^p - C_B^p - (1 + C_B + C_C)^p \right] \]

\[n_{A \rightarrow C} = \alpha T_{A \rightarrow C} \]
Non-Uniform Probability Distribution

- Number of terminals in C_C, C_B:
 \[C_B = \sum_{l=1}^{l-1} 4l = 2l(l-1), \quad C_C = 4l \]

 \[n(l) = \alpha \left[(1 + 2l(l-1))^P + (2l(l-1) + 4l)^P - (2l(l-1))^P - (1 + 2l(l-1) + 4l)^P \right] \]

 \[q(l) = \frac{1}{2l} \left[(1 + 2l(l-1))^P + (2l(l-1) + 4l)^P - (2l(l-1))^P - (1 + 2l(l-1) + 4l)^P \right] \]

 \[q'(l) \approx P(1 - P)2^{-(1-P)} l^{-(4-2P)} \]

- For $l >> 1$:
 \[q'(l) \approx l^{-(4-2P)} \]
Stroobandt WL Estimation Method

- Modification of Donath method
 - Non-uniform probability distribution
- Interconnection length distribution
 - Structural distribution
 - Occupying probability
- More accurate results than Donath
Cheng WL Estimation

Considering IP Block Effect

- Flat WL estimation approach
- Total wirelength
 - Redistribution
 - Detour
- Based on geometrical characteristics
- Provide guidelines for revising floorplanning/global placement before detailed placement and routing
Taraneh WL Estimation

Considering IP Block Effect

- Hierarchical approach
 - Consider complexity of circuit using Rent exponent
 - Consider geometrical characteristics
- Deploy effect of different placement alg. in Rent exponent extraction
- Good for large-scale circuits
Methodology

- Physically partitioning into 4 sub-circuits
- Continue till no. of cells ≤ β
- At each level of hierarchy
 - n_h: Avg. no. of interconnections
 - L_h: Average length of interconnections

Total wirelength:

$$L_{tot} = \sum_{h=0}^{H} n_h L_h$$
Average Length of Interconnection

- L_{TB}: WL, transparent blockage
- L^h_{DT}: Vertical detour
- L^v_{DT}: Horizontal detour
- Average WL
 \[\bar{L}_{\text{intra}} = \bar{L}_{TB} + \bar{L}^h_{DT} + \bar{L}^v_{DT} \]
Average Length of Interconnection

- Horizontally, vertically, diagonally adjacent bins
 - Transparent block
 - Horizontal detour
 - Vertical detour

- Detour happens if two terminals are on different sides of IP Block
 - Probabilistic nature
Average Estimated WL per Level

\[\overline{L}_{\text{inter},l} = \frac{1}{6} \left(\delta \left(L^h_{\text{inter}} (A, B) + L^h_{\text{inter}} (C, D) + L^v_{\text{inter}} (A, C) + L^h_{\text{inter}} (B, D) \right) \right) \\
+ \left(1 - \delta \right) \left(L^d_{\text{inter}} (A, D) + L^d_{\text{inter}} (B, C) \right) \]

\(\delta \) captures optimization behavior of placement algorithms
Open Research Problems

- Study the effect of IP blocks on Rent exponent
- Considering the effect of congestion around IP blocks and slivers
- Extending WL estimation for timing driven placement methods
Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion
Routing Congestion Prediction

- Several post-placement algorithms presented to analyze congestion before routing.
- Use routing estimation model to predict routing congestion
- Derive the mathematical equations to estimate the congestion using a normal distribution approximation
- Use a probabilistic approach to estimate the congestion
Congestion Prediction

Concurrent Congestion and Wirelength Estimation

- High-utilization benchmarks
 - Congestion is very likely
 - Detour b/c of congestion
- WL estimation needs congestion map
 - Modeling congested areas as artificial IP blocks
- Regional congestion estimation
 - Needs wirelength estimation for internal routing demand
- Concurrent congestion & wirelength estimation
 - Hierarchical bottom-up approach
Congestion Prediction

Regional Congestion Estimation

Routing demand: \(D(r) = ID(r) + ED(r) \)
- Internal routing demand \(ID(r) \)
- External routing demand \(ED(r) \)

Internal routing demand
- Equal to WL

\[\square \]
Congestion Prediction

Regional Congestion Estimation

- External Routing Demand
 - The probability of occurring a wire of length l, $P_l = l^{-(4-2P)}$
 - If $NB = \#$ of bins
 $$\sum_{i=2}^{2\sqrt{NB}} P_i + P_1 = 1$$
 - And, we have
 $$\frac{p_{i+1}}{p_i} = \frac{(i + 1)^{-(4-2P)}}{(i)^{-(4-2P)}}$$
 - Calculate P_1, P_2, ..., $P_{2\sqrt{NB}}$
Congestion Prediction

Regional Congestion Estimation

- External Routing Demand
 - Calculate \(P_1, \ldots, P \) \(\frac{2\sqrt{NB}}{\sum_{i=1}^{2\sqrt{NB}} P_i} = 1 \)

\[
P_2 \sum_{i=1}^{2\sqrt{NB}} (i+1)^{(4-2P)} + P_1 = 1
\]

- Riemann Zeta function:

\[
\zeta(x) = \frac{1}{\Gamma(x)} \sum_{0}^{\infty} \frac{u^{x-1}}{e^u - 1}
\]

\[
2\sqrt{NB} \sum_{i=0}^{NB-1} (i+1)^{(4-2P)} = \text{Zeta}(4-2P) - \text{Zeta}[4-2P, 2\sqrt{NB} + 1]
\]

- Total external demand:

\[
ED = \sum_{i=1}^{\infty} C_i \times P_i
\]

0 < NB < 64, 0.5 < P < 0.6
Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion
Concurrent WL and Cong. Prediction

- Bottom-up hierarchical analysis
- Congestion estimation
 - Analyze external routing demand
 - Analyze internal routing demand using WL of previous level
 - Obtain congestion map of this level
- WL Estimation
 - Obtain avg. no. of interconnect per level
 - Analyze avg. length of interconnect
 - Model congested areas (known from previous level) as artificial IP blocks
Open Research Problems

- Considering the effect of vias in the estimation
- Extending congestion estimation for 3D placement
- Extending the concurrent estimation methods for congestion and wirelength on the other estimation methods
Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion
Density Utilization Alleviation

- Need a global view of density (congestion) map

Local density alleviation

Global density alleviation
Density Utilization Alleviation

- Flow algorithms
 - Local view
 - Ignore WL optimization
- Solution
 - White space allocation
 - Linear/quadratic
 - Greedy

The interfering flow in the crossing of two arrows
Density Utilization Alleviation

- Cell Redistribution
 - Form working area round highly-congested bins
 - Redistribute cells in working (by using min-cut partitioning)

- Cell Migration
 - Move cells out of highly-congested bins
 - Accept move if reduces congestion
 - Different Criteria to accept a move
Open Research Problems

- Incorporating the issues like
 - Thermal placement and hot spot distribution in congestion alleviation algorithms.

- Considering the white space needed around the big IP blocks in the density alleviation algorithms
 - Guarantee routability in later phases.
Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion
Statistical Timing Analysis

- Key parameters in device variations
 - Length L,
 - Threshold voltage V_t
 - Oxide thickness t_{ox}
- Process parameter variations normally distributed as random variables
- Gate delay, d, will have a probability distribution function: Gaussian distribution with parameters μ and σ.
Variation Sources

- Figures are courtesy of IBM, Intel and TSMC

t_{ox}

Wire Thickness
Target=0.375um
Gate Delay Distribution

- Gate Delay: *almost* worst case delay
 \[\text{prob}(d > D_{\text{gate}}) < 0.05 \]
- Delay distribution of a circuit using two operators: Max and Sum
- Re-convergent paths produce correlations between delay
- No set of distributions which is closed under both sum and max
- Quantization can be applied to work with discrete distributions with a polynomial associated:
 \[G_d(x) = \sum_{i=1} P_i x^{d_i} \]
MAX operation: inherently non-linear
Timing Model

- Canonical timing model for gate/wire delay
 - Assumption: Gate/wire delay is linearly dependent on the variation sources
 - Problem: Non-linear dependency of delay on process parameters

- Linear MAX approximation for circuit delay
 - Problem: Significant error could occur in some cases
Open Problems

- Obtain a probabilistic model nets with re-convergent fan-outs
 - Half perimeter approximation no longer accurate because of the branches in a net
- Analyze delay distribution for nets during placement.
- Incorporating delay distribution into placement algorithm in timing driven placement
Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion
Integrated Cong. & Delay Estimation

- Hierarchical CAD flows to consider wirelength, congestion, thermal issues and power early in design flow
 - Pure wirelength minimization without congestion estimation methods may lead to un-routable designs
 - Wirelength minimization along with congestion removal but ignoring thermal issues may lead to designs with several hot-spots.
- All these predictions should be highly integrated
 - Goal is to degrade the harmful side effects of optimizing each parameter individually
Integrated Cong. & Delay Estimation

- Location-based Delay Prediction
- Topology-based Delay Prediction
- Statistical Timing Analysis
- Placement
- Power Analysis (Voltage Prediction)
- Congestion Prediction
- Thermal Analysis
- Wirelength Prediction
Conclusion

- Integrated prediction methods
- WL estimation
 - Individual net length
 - Total interconnect length
- Congestion Estimation
 - Pre-Placement
 - Post-Placement
- Timing Analysis
- Integrated Estimation of WL, Congestion, and Delay
Thank You!