Minimal-Power, Delay-Balanced Smart Repeaters for interconnects in the Nanometer Regime

<u>Roshan Weerasekera</u>, Dinesh Pamunuwa*, Li-Rong Zheng, Hannu Tenhunen *roshan@imit.kth.se*

Dept. Electronic, Computer and Software systems KTH School of Information and Communication Technology 164 40 Kista, Sweden

*Centre for Microsystem Engineering, Lancaster University, UK

Challenges in global Communication...

- Shrinking feature size
- Increasing die sizes,
- Scaling of supply voltage
- Increasing interconnect density
- Fast clock rates

Global wires suffer from

- Delay Problems
- Power Problems
- Reliability Problems

Source: SIA Roadmap 1999

Interconnect Capacitance

 Interconnects in deep sub-micron technologies are typically very lossy so that the RC delay dominates. To keep the resistance to a minimum the aspect ratio (height/width) of wires is kept high.

Majority of Interconnect capacitance is side-capacitance and hence Cross-talk effect becomes more important.

Effects of crosstalk

- 1. Couples Noise on Victim
- 2. Affects to the signal speed (crosstalk-induced delay or Dynamic Delay)

Effective Capacitance depends on Activity

The effective interconnect capacitance can be written down as:

$$C_{eff} = C_s + SF \cdot C_c$$

where $SF = \{0, 2\}$

2.5

Grid spacing: 1x

Grid spacing: 2x

±80%

3.5

2x

1x

Repeater Insertion for Delay Reduction

Widely used method for delay reduction ...

- Adverse effect of repeater insertion: Increased Power Consumption.
- 50% of dynamic power consumption of a microprocessor is due to interconnects.
 - And in 5 years, interconnect power will reach 80% of the total
 - Global signal lines account for 34% of this power.

Other ways for delay reduction ...

- Alternative to Repeater Insertion
 - Trasient Sensitive Trigger, Charge Recycling Technique, Booster, TAGS reciever, Aggressor-Aware repeater
 - Use skewed inverters, consume more energy, occupy a large area
- Error Control or Trasition Coding
 - Complex CODEC circuitry causes additional delay and consumes more power
- Introducing additional delay between wires to reduce Dynamic Delay
 - Dissipates more power for transitions in the same direction
- Advantage of the repeater circuit proposed in this work:
 - Energy Saving
 - Delay Equalization
 - A clear design methodology similar to traditional repeater insertion
- with minor increase in Circuit Complexity.

Switching Activities for Two Coupled Nets

 16 possible patterns can be identified and they are categorized into five different groups, given below:

Group	Case	Switching Event on		Switch Factor		Energy Dissipation for wire $i (\times \frac{1}{2} V_{dd}^2)$ with		
		wire i	wire j	Delay-Based (λ^d)	Power-Based (λ^p)	Traditional driver	Smart driver	
1	1	↓	\rightarrow	0	0.25	$C_{w_trad} + 0.25C_c$	$C_{w_smart} + 0.25C_c$	
	2	Î	Ť	0	0.25	$C_{w_trad} + 0.25C_c$	$C_{w_smart} + 0.25C_c$	
2	3	0	0	n.a.	n.a.	0	0	
	4	0	1	n.a.	n.a.	0	0	
	5	1	0	n.a.	n.a.	0	0	
	6	1	1	n.a.	n.a.	0	0	
3	7	0	1	1	1	0	0	
	8	1	0	1	1	$C_{w_trad} + C_c$	$C_{w_smart} + C_c$	
	9	0	\rightarrow	1	1	0	0	
	10	Ļ	0	1	1	$C_{w_trad} + C_c$	$C_{w_smart} + C_c$	
4	11	1	1	1	0	0	0	
	12	1	1	1	0	C_{w_trad}	C_{w_smart}	
	13	1	\rightarrow	1	0	0	0	
	14	Ļ	1	1	0	C_{w_trad}	C_{w_smart}	
5	15	1	↓	2	1.75	$C_{w_trad} + 1.75C_c$	$C_{w_trad} + 1.75C_c$	
	16	Ļ	1	2	1.75	$C_{w_trad} + 1.75C_c$	$C_{w_trad} + 1.75C_c$	

- To ensure error-free operation, timing constraints have to be satisfied for the switching patterns 15 and 16. The worst-case switching pattern.
- But, this pattern occurs only twice out of 16 patterns.

Our Adaptive Smart Repeater Concept

- With a traditional repeater, the drive strength is static and hence there is a variation of delay depending on the switching pattern.
- In our work, the drive strength is dynamically altered depending on the relative bit pattern.

- With the worst-case drive strength is large, and with the best-case drive strength is less.
- This cause to a less variation of delay!!!

Energy Saving with the SMART driver

- The energy dissipation per cycle depends on whether or not switching transitions occur, and on the relative swithing pattern. A switching transfer is a probabilistic event.
- Average energy dissipation for wire i with tranditional repeater is:

$$E_{avg}^{trad}(i) = 0.5V_{DD} \left[p_{s,s} \left(C_{w_{trad}} + 0.25C_{c} \right) + p_{e,1} C_{w_{trad}} + p_{e,0} \left(C_{w_{trad}} + C_{c} \right) + p_{o,o} \left(C_{w_{trad}} + 1.75C_{c} \right) \right]$$

Where, $p_{x,y}$ is the probability that wires *i,j* switch as defined below: (s,s) - both wires switch in same direction; (e,0) - wire *i* switches up or down while wire *j* is quiet at 0; (e,0) wire *i* switches up or down while wire *j* is quiet at 1; (o,o) - both wires switch in different directions.

So,

$$E_{avg}^{trad}(i) = 0.5V_{DD}\left[\left(p_{s,s} + p_{e,1} + p_{e,0} + p_{o,o}\right)C_{w_{trad}} + \left(0.25p_{s,s} + p_{e,0} + 1.75p_{o,o}\right)C_{c}\right]$$

• Average energy dissipation for wire i with SMART driver is:

$$E_{avg}^{smart}(i) = 0.5V_{DD}^{2} \left[\left(p_{s,s} + p_{e,1} + p_{e,0} \right) C_{w_smart} + p_{o,o} C_{w_trad} + \left(0.25 p_{s,s} + p_{e,0} + 1.75 p_{o,o} \right) C_c \right]$$

Hence,

$$\Delta E = 0.5 V_{DD}^{2} (p_{s,s} + p_{e,1} + p_{e,0}) (C_{w_{trad}} - C_{w_{smart}})$$

Energy Saving with the SMART driver

• Substituting $C_{w_trad} = C_s + H_t (C_{g\min} + C_{d\min})$ and $C_{w_tsmart} = C_s + H_t C_{d\min} + H_m C_{g\min}$ we get:

$$\Delta E = \frac{H_a}{2} (p_{s,s} + p_{e,0} + p_{e,1}) C_{g\min} V_{DD}^{2}$$

 If the switching events are random uniformly distributed events with no corelations between neighbouring lines

$$\Delta E_{avg} = \frac{3}{16} H_a C_{g\min} V_{DD}^{2}$$

• With the same worst-case delay as a traditional driver.

Design Methodology: Delay Modeling

- Repeater Modeling: Bakoglu and Meindl (1985) used a linearized repeater model as a combination of resistor and capacitor which scale linearly with size.
- We included the drain diffusion capacitance as well.

- Switch S, is controlled by a logic circuit which determines the switching pattern.
 - For the worst-case, S is Closed.
 - For the best-case, S is open

 \mathbf{R}_{dmin}

Design Methodology

• Delay Analysis with both Drivers Switching (for the worst-case Switching Pattern)

• 50% delay for the wire is therefore:

$$T_{MA} = k \left\{ 0.7R_d \left(C_d + \frac{C_w}{k} + C_g \right) + 0.7 \frac{R_w}{k} C_g + 0.4 \frac{R_w}{k} \frac{C_w}{k} \right\}$$

where $\begin{aligned} R_d &= \left(\frac{R_{dmin}}{H_m} \parallel \frac{R_{dmin}}{H_a}\right) = \frac{R_{dmin}}{H_m + H_a}, \ C_g = C_{gmin}(H_m + H_a), \\ C_d &= C_{dmin}(H_m + H_a) \text{ and } \mathsf{C} \end{aligned}$ Here H_m and

Design Methodology

So, TMA can be simplified into

$$T_{MA} = 0.7k(t_{Dout} + t_{Din}) + \frac{0.7(t_{DWs} + 2t_{DWc})}{(H_m + H_a)} + 0.7t_{WD}(H_m + H_a) + 0.4\frac{(t_{Ws} + 2t_{Wc})}{k}$$

where

 $t_{Dout} = R_{dmin}C_{dmin}, t_{DWs} = R_{dmin}C_s, t_{DWc} = R_{dmin}C_c, t_{Din} = R_{dmin}C_{gmin}, t_{WD} = R_wC_{gmin}, t_{Ws} = R_wC_s \text{ and } t_{Wc} = R_wC_c$

Similarly, when the Assistant is quiet,

$$T_{M} = 0.7k \left[t_{Dout} \left(1 + \frac{H_{a}}{H_{m}} \right) + t_{Din} \right] + 0.7H_{m}t_{WD} + \frac{0.7(t_{DWs} + \lambda t_{DWc})}{H_{m}} + 0.4\frac{t_{Ws} + \lambda t_{Wc}}{k}$$

20 February, 2006

Optimum Buffer Sizes

◆ We obtained optimal (Hm+Ha) and k, by derivating TMA

$$H_{m_opt} + H_{a_opt} = \sqrt{\frac{t_{DWs} + 2t_{DWc}}{t_{WD}}} \qquad \qquad k__opt = \sqrt{\frac{0.4(t_{Ws} + 2t_{Wc})}{0.7(t_{Dout} + t_{Din})}}$$

• To find values of Hm and Ha seperately, TM is differentiated w.r.t Hm and equated to zero. $\partial T_{M} = e^{-\frac{k H}{2} t_{D}} + \frac{1}{2} t_{DW} + \frac{1}{2} t_{DW}$

• So, when
$$\mu = \frac{4H_t kt_{Dout}}{t_{WD}} + \left(\frac{kt_{Dout}}{t_{WD}}\right)^2$$
$$H_a = H_t + \frac{kt_{Dout}}{2t_{WD}} - \sqrt{\frac{\mu}{4} + \frac{t_{DWs} + \lambda t_{DWc}}{t_{WD}}}$$
$$H_m = \sqrt{\frac{\mu}{4} + \frac{t_{DWs} + \lambda t_{DWc}}{t_{WD}}} - \frac{kt_{Dout}}{2t_{WD}}$$

Delay Balancing – the key technique

- SMART driver saves energy by reducing the capacitive load for certain switching combinations.
- The driver is essentially slower for the switching combinations that give rise to a lower capacitive load, and hence reduces Jitter.

With low Ceff

• Evaluate Ha such that $T_{MA} - T_M = 0$

$$AH_{aDB}^2 + BH_{aDB} + C = 0$$

$$A = 0.7t_{WD}$$

$$B = 0.7[kt_{Dout} - t_{WD}H_t$$

$$+ \frac{t_{DWs} + 2t_{DWc}}{H_t} + \frac{(2-\lambda)t_{Wc}}{k}]$$

$$C = -(2-\lambda)\left[0.7t_{DWc} + \frac{0.4t_{WC}}{k}\right]$$

With high Ceff

Case	k	H_t	H_m	H_a	ΔT	ΔE
Strategy One	4	173	105	68	3.1%	10.9%
Strategy Two	4	173	142	31	-1.6%	5.0%
Delay Balanced	4	173	75	97	18.7%	15.6%
Traditional	4	173	N.A.	N.A.	_	_

 Theoritically, this new driver technique will save 15% of Energy, and jitter reduction is 18%.

Propagation Delay for Different Patterns

Propagation Delay with Delay Balancing

In progress - Circuit Level Implementation

Thank you !