Supported by NSF & MARCO GSRC

Statistical Crosstalk Aggressor Alignment Aware Interconnect Delay Calculation

Andrew B. Kahng, Bao Liu, Xu Xu

UC San Diego

http://vlsicad.ucsd.edu

Outline

SSTA Background

- Problem formulation
- Method: theory and implementation

Experiment

Summary

Background: Variability

Increased variability in nanometer-scale VLSI designs

• Process:

- o OPC → Lgate
- o CMP → thickness
- Doping \rightarrow Vth

• Environment:

- Supply voltage → transistor performance
- Temperature \rightarrow carrier mobility μ and Vth

These (PVT) variations result in circuit performance variation

Background: Timing Analysis

- Min/Max-based
 - Inter-die variation
 - Pessimistic
- Corner-based
 Intra-die variation
 CLK
 Computationally expensive
- Statistical
 PDF for delays
 Reports timing yield

min

Background: SSTA

Represent delays and signal arrival times as random variables

• Block-based

- Each timing node has an arrival time distribution
- Static worst case analysis
- Efficient for circuit optimization

• Path-based

- Each timing node for each path has an arrival time distribution
- Corner-based or Monte Carlo analysis
- Accurate for signoff analysis

Background: SSTA Correlations

- Delays and signal arrival times are random variables
- Correlations come from
 Spatial

 inter-chip, intra-chip, random variations
 Re-convergent fanout
 Multiple-input switching
 Cross-coupling

Outline

- SSTA Background
- Problem formulation
- Method: theory and implementation
- Experiment
- Summary

Multiple-Input Switching

 Simultaneous signal switching at multiple inputs of a gate leads to up to 20%(26%) gate delay mean (standard deviation) mismatch
 [Agarwal-Dartu-Blaauw, DAC-04]

Crosstalk Aggressor Alignment

 Crosstalk aggressor alignment induced interconnect delay variation is an equally significant source of uncertainty in SSTA

Problem Formulation

Given

Coupled interconnect system
Input signal arrival time distributions

Find

Output signal arrival time distributions

 We represent signal arrival times as polynomial functions of normally distributed random variables

$$x_i = f_i(r_1, r_2, \dots)$$

$$r_i \sim N(\mu_i, \sigma_i)$$

E.g., for first order approximation of two input signal arrival times, their skew (crosstalk alignment) is given by normally distributed random variables with correlation taken into account $x_1 \sim N(\mu_1, \sigma_1) \qquad x_2 \sim N(\mu_2, \sigma_2)$

 $x_{1}^{\prime} = n(\mu_{1}, \sigma_{1})^{\prime} = n(\mu_{2}, \sigma_{2})^{\prime}$ $x_{1}^{\prime} = x_{2} - x_{1} \sim N(\mu_{1}^{\prime} = \mu_{2} - \mu_{1}, \sigma_{1}^{\prime} = (\sigma_{1}^{2} + \sigma_{2}^{2} + corr)^{1/2})$

Outline

- SSTA Background
- Problem formulation
- Method: theory and implementation
- Experiment
- Summary

Interconnect Delay as a Function of Crosstalk Alignment

For 1000um global interconnects in 90nm technology

Interconnect Delay as a Function of Crosstalk Alignment

- More complex than the timing window concept
- Can be computed by simulation or delay calculation
- Approximate as a piecewise quadratic function

Interconnect Delay as a Function of Crosstalk Alignment

Similarly, we can model the case of input signals switching in opposite directions
 (not discussed here)

Closed-Form Interconnect Delay Distribution

For a normal distribution of crosstalk alignment

$$P(\tau) = \begin{cases} \frac{1}{2} \left(erf\left(\frac{t_2 - \mu'}{\sigma'}\right) - erf\left(\frac{t_1 - \mu'}{\sigma'}\right) \right) & \tau = d_1 \\ -\frac{1}{\sqrt{2\pi\sigma'}} \left(\frac{1}{\sigma_a} e^{\frac{(-\sigma_a - a_1 - 2a_2\mu')^2}{8a_2^2 \sigma'^2}} + \frac{1}{\sigma_b} e^{\frac{(-\sigma_b - b_1 - 2b_2\mu')^2}{8b_2^2 \sigma'^2}} \right) & d_1 \le \tau \le d_0 \\ 1 - \frac{1}{2} \left(erf\left(\frac{t_3 - \mu'}{\sigma'}\right) - erf\left(\frac{t_0 - \mu'}{\sigma'}\right) \right) & \tau = d_0 \end{cases}$$

$$\sigma_a = \sqrt{4a_2(\tau - a_0) + a_1^2} \\ \sigma_b = \sqrt{4b_2(\tau - b_0) + b_1^2}$$

Closed-Form Interconnect Output Signal Arrival Time Distribution

For a normal distribution of crosstalk alignment

Statistical Delay Calculation for Coupled Interconnects

Input: Coupled interconnects Input signal arrival time distributions Process variations

Output: Output signal arrival time distributions

- **1.** Interconnect delay calculation for sampled crosstalk alignments
- 2. Approximate interconnect delay in a piece-wise quadratic function of crosstalk alignment
- 3. Compute output signal arrival time distribution by closed-form formulas
- **4.** Apply superposition for each input
- **5.** Combine with other process variations

Multiple Aggressors / Variations

 An RLC interconnect system is a *linear* system, which enables us to apply superposition to model the effects of multiple crosstalk aggressors

Correlated variation sources
 For each condition

 Compute conditional probabilities
 Combine conditional probabilities

 Independent variation sources

Superposition

Runtime Analysis

- Interconnect delay calculation for N sampled crosstalk alignment takes O(N) time where N = min(1.5 * max input transition time, 6 * sigma of crosstalk alignment) / time_step
- Fitting takes O(N) time
- Computing output signal arrival time distribution takes constant time, e.g., when updating statistical delay calculation in an iterative SSTA

Iterative SSTA

 STA-SI goes through an *iteration of timing window* refinement for reduced pessimism of worst case analysis

 SSTA-SI goes through an *iteration of signal arrival* time pdf refinement with reduced deviations

Outline

- SSTA Background
- Problem formulation
- Method: theory and implementation
- Experiment
- Summary

Experimental Setting

- Quadratic function regression performed with Origin
- Monte Carlo simulation performed with HSPICE
- Closed-form model-based distribution calculation: C

• Testcases:

- 70nm BTPM model (Cao et al.)
- 130nm industry designs

70nm	L (um)	W(um)	S(um)	T(um)
global	1000	0.45	0.45	1.20
intermediate	200	0.14	0.14	0.35
local	30	0.10	0.10	0.20

Interconnect Delay Distribution

For a pair of 1000um coupled global interconnects in 70nm BPTM technology, with 10, 20, 50 and 100ps input signal transition time, and crosstalk alignment in a normal distribution N(0, 10ps)

Interconnect Delay Standard Deviation due to Varied Wire Width

For a pair of 1000um coupled global interconnects in 70nm BPTM technology, with 10, 20, 50 and 100ps input signal transition time, and wire width variation in a normal distribution N(0, 10%)

Interconnect Output Signal Arrival Time Distribution

For a pair of 1000μ m coupled global interconnects in 70nm BPTM technology, with 10, 20, 50 and 100ps input signal transition time, and crosstalk alignment in a normal distribution N(0, 6ps)

Experiment

Test case 1: 1000µm interconnects of 70nm BPTM technology

	Delay		Output		
	SPICE	Model	SPICE	Model	% diff
3 σ Tr(ps)	μσ	μ σ	μσ	μ σ	μσ
50 50	3.83 0.85	3.82 0.83	29.4 16.2	29.7 16.6	0.78 2.46
100 100	3.82 0.92	3.84 0.83	54.8 32.8	55.6 33.9	1.52 3.38
200 200	3.78 0.96	3.78 0.82	105.2 65.9	106.3 67.0	1.06 1.65

Test case 2: interconnects in a 130µm industry design

	Delay		Output		
	SPICE	Model	SPICE	Model	% diff
3σ Tr(ps)	μ σ	μσ	μσ	μ σ	μσ
50 100	4.29 0.16	4.30 0.15	54.5 16.4	53.4 16.1	-2.09 -0.05
100 100	4.30 0.18	4.30 0.17	54.8 32.9	54.1 33.0	-0.17 0.18
200 200	4.25 0.18	4.25 0.16	105.2 65.9	104.9 66.1	-0.28 0.35

Outline

- SSTA Background
- Problem formulation
- Method: theory and implementation
- Experiment
- Summary

Summary

SSTA must consider SI effects!

- We take crosstalk aggressor alignment into account in statistical interconnect delay calculation
 - We approximate interconnect delay as a piecewise quadratic function of crosstalk aggressor alignment
 - We derive closed-form formulas for interconnect delay and output signal arrival time distribution for given input signal arrival times in polynomial functions of normal distributions
 - Our experiments show that neglecting crosstalk alignment effect could lead to up to 114.65% (71.26%) mismatch of interconnect delay means (standard deviations), while our method gives output signal arrival time means (standard deviations) within 2.09% (3.38%) of SPICE results

Thank you !

Experiment: Delay Variation

	SPICE	Without Crosstalk		Our	
Tr =10ps	μ σ	μ Diff(%)	σ Diff(%)	μ Diff(%)	σ Diff(%)
μ' = -10ps	3.13 0.38	5.65 80.5	0.17 -56	3.12 -0.64	0.38 -0.1
μ' = 0ps	3.38 0.58	5.63 66.5	0.17 -71	3.38 0.0	0.57 -1.9
μ' = 10ps	4.85 0.31	5.64 16.3	0.17 -47	4.85 0.0	4.32 -0.23
Tr =20ps	μ σ	μ Diff(%)	σ Diff(%)	μ Diff(%)	σ Diff(%)
μ' = -10ps	3.14 0.37	6.52 114	0.19 -47	3.12 -0.96	0.37 1.26
μ' = 0ps	3.67 0.47	6.53 77.9	0.19 -58	3.66 -0.01	0.47 -1.0
μ' = 10ps	5.22 0.55	6.52 24.9	0.19 -65	5.22 0.0	0.54 -1.48

Test case: 1000μ m interconnects of 70nm BPTM technology Assume: wire width distribution N(1, 0.05) * Normal_width crosstalk alignment distribution N (μ ', 3.33ps)