

Energy/area/delay trade-offs in the physical design of onchip segmented bus architecture

Jin Guo Antonis Papanikolaou Pol Marchal Francky Catthoor

1

IMECNOLOGY

OUTLINE

Introduction

Optimization targets at floorplanning stage

Exploration methodology

Experiments

Conclusions

Energy is very important for embedded systems

The embedded systems are driven by the portable batteries, which are power and energy limited

Customers are willing to pay a bit more for devices with longer battery life times

We focus on the intra-tile communication networks

5

System level decision: activity-aware netlist for energy optimal solutions

Blocks that communicate very frequently should be ordered close to each other and vice versa

segmented bus vs. shared bus, MPEG4 encoder driver

PEs Local memories **Motion Estimation** MEM Motion MEM Compensation 12 MFM Texture Coding **VLC** MEM

MPEG4 encoder

• The floorplanning is at block level-> IP reuse

• Size & shape of the macro block are fixed -> avoid overruling the already made decisions at higher level. Changing the shape of an IP blocks alters its energy consumption per operation

Floorplan result demonstrated on MPEG4 encoder

Large layer2 memory dominates the chip area. Some area overhead in the small tile has slight impact on the total chip area, but improves network energy significantly

OUTLINE

Introduction

Optimization targets at floorplanning stage

Exploration methodology

Experiments

Conclusions

Physical design level: Tradeoffs for various criteria

Area

- Directly related to the manufacture cost
- Would like to pack all the modules very tightly

Energy dissipation (communication network)

- With technology nodes shrinking down, interconnects consume considerable energy
- A well designed layout helps to reduce network energy consumption

Timing closure

Data need to be transferred to the destinations in the designed time budget

Example of tradeoffs between chip area and network energy (MPEG4 application)

Area: 5.108 mm2 energy: 2.766*(1e-4) J

Area optimal layout

Area: 7.832 mm2 energy: 0.790*(1e-4) J

Network energy optimal layout

OUTLINE

Introduction

Optimization targets at floorplanning stage

Exploration methodology

Experiments

Conclusions

Physical design tools used in our experiments

Floorplanning tool (Parquet)

- -- Academic placer, developed by Univ. of Michigan
- -- Macro block based floorplanner

Routing tool : Magma

- -- Commercial physical design tool
- -- Not supporting the automated floorplanning for macro blocks
- -- Detailed routing, layout evaluation

Additional scripts

- -- Switches insertion
- -- Converting Parquet output files into MAGMA input files

Trade-offs exploration methodology flow-graph

The impact of the different weight setting on the chip area and network energy

Why do we insert the switches after floorplanning?

Solution: add the switches after floorplanning

Step1: Parquet generates floorplan without switches

Step2: switches are added and imported to MAGMA:

- Close to the communication ports
- Without overlapping to all the other blocks

OUTLINE

Introduction

Optimization targets at floorplanning stage

Exploration methodology

Experiments

Conclusions

Area/Energy Pareto curve for MPEG4 encoder

With only 10% area overhead in the tile, we reduce energy consumption by a factor of 2.7

There are some intermediate tradeoff solutions for the designer to choose

Area/Delay Pareto curve for MPEG4 encoder

With 5% area variation, we can have 15% gain in delay

Efficient energy/delay/area decisions have to made in the three dimensional space to meet the specific design requirements

Conclusions

 Using the segmented bus, we can significantly improve network energy consumption compared to shared bus

 A design flow is introduced to explore the tradeoffs in network energy dissipation, chip area and delay efficiently

 A designer can significantly improve energy consumption with a slight penalty in area at physical design stage

Area optimal layout (MPEG4 application)

Area: 5.108 mm2 energy: 2.766*(1e-4)

The chip area utilization is high The high active memories have long communication path, which cause large energy consumption

Communication energy optimal layout (MPEG4 application)

Area: 7.832 mm2 energy: 0.790*(1e-4)

The high active memories are placed very close to the functional unit, which benefits the network energy.

The layout is not quite compact