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Case study: 180 nm ASIC
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Case study wafers
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Case study layout
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Case study lessons

Alternative statement of Murphy’s Law:
“Variability exacerbates poor design”

Need to cover 2n BEOL corners, not 2

At what technology are statistical techniques 
necessary?

Why is wire variability specially important?
– changes both gate and wire delay
– not easy to predict which is the worst corner
– wire delay and coupling effects play a significant role in 

determining ultimate performance
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Best Case Worst Case

Reference Level

Variability from geometry
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Variability from Chemical Mechanical Polishing

Courtesy S. Aksu, UC Berkeley

CMP machine with rotational platen

Notice that chips on the outside of the wafer move more
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CMP effects
Single Level Multi Level

Copper Oxide

Ideal Case

Realistic Case

Dishing Erosion

Metal 2

Metal1Copper

[Praesagus]
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Variability from Reactive Ion Etching

Cu
LowK

Nitride

liner

Wider wires should be treated separately due to RIE 
etch rate differences

Thicker wires have resistance, capacitance and 
inductance ramifications
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Normalized metal resistance data over 3 months
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Normalized cumulative statistics
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Normalized metal resistance across manufacturing lines
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Normalized single-level capacitance distribution
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Across-chip BEOL variation causes

Lithography ACV, just like PC level of similar dimension

Density-dependent thickness
• polish, RIE
• pattern density is a strong function of metal level
• dummy fill reduces the variation

OPC distance-dependent bias… more about this later

Density on M-1 level causes thickness and width 
changes
• layer thickness variations in Mx-1 transfer into Mx causing metal 

thickness variation
• on large wafers, Cu reflection impacts lithography
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Any performance left in worst-case design?

90 nm

65 nm

45 nm
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Worst-case vs. 3σ design
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What do we do with all this variability?
As we know, 

There are known knowns. 
There are things we know we know.

We also know 
There are known unknowns. 

That is to say 
We know there are some things 

We do not know.

But there are also unknown unknowns, 
The ones we don't know 

We don't know.

Donald H. Rumsfeld1

Known
knowns

Known
unknowns

Unknown
unknowns

Statistical
timing and

power analysis

1Dept. of Defense news briefing, 2/12/02, linebreaks mine
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Statistical timing

Optimization
Using criticality and incremental timing: Guthaus et al, ICCAD ’05

Chip-to-chip variations
Chang et al, ICCAD ’03

Within-chip spatially
correlated variations

Zhang et al, DAC ’06

Within-chip independ-
ently random variations
Visweswariah et al, DAC ’04

Statistical timing
Incremental timing: Visweswariah et al, DAC ’04

Nonlinear and non-Gaussian: Chang et al, DAC ’05

Diagnostics
Criticality: Xiong et al, TAU ’06

Yield gradients: Zolotov et al, TAU ’06



Thomas J. Watson Research Center

© 2006 IBM Corporation23 of 42 Statistical Timing and Optimization SLIP 2006

Coupling noise
Aggressor

Victim

Driver strengths are functions of process

Overlap window is a function of process

Coupling capacitance is a function of process

Slews are functions of process

Hence ∆delay is a function of process
– by taking advantage of these correlations, pessimism can be reduced

However, logic patterns/correlations cannot be treated statistically
– a single reproducible vector that causes a deterministic timing problem due to 

coupling noise is enough to make the chip unusable
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Extraction

How many random variables per metal level?
– 1, 2 or 3?
Variational extraction (transform geometry distributions to 
correlated R, C distributions)
Pattern-density-aware extraction (known unknown!)
– tile-based thickness model, followed by thickness-aware 

extraction
Should extraction anticipate OPC and other data prep. 
manipulations?
Spreading for critical area reduction vs. bunching for dummy fill 
insertion
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Metal blooming: anticipate OPC?

Anticipation helps reduce resistance

Increases extraction complexity
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Spreading vs. dummy fill insertion

Dummy fill Dummy fill

Source: NEC0%
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Robust circuit design
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Its the sensitivities, stupid!
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Deterministic vs. statistical optimization

Deterministic Statistical

Metrics are single numbers Metrics are correlated 
distributions

No easy way to cover “all 
corners” or entire process space

Implicitly covers entire process 
space

Critical path is unique Critical path is different at each 
point in the process space

Difficult to consider parametric 
yield explicitly; hard to 
incorporate robustness

Parametric yield can be 
optimized or constrained; 
robustness is a natural metric

“Max” operation is not 
differentiable

“Max” operation is differentiable
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Slack is lacking

p1

p2

In this case, the path or end-
point of interest is critical in

only a small region around the
chosen process corner



Thomas J. Watson Research Center

© 2006 IBM Corporation33 of 42 Statistical Timing and Optimization SLIP 2006

Most critical path?

p1

p2

In this case, the path or end-
point of interest is critical in
much of the process space
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What about -3σ slack?

Slack
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These two distributions have the same -3σ
slack, but in one case, reducing sensitivities
won’t help much
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Relative ordering of paths/end-points

If path A has a slack of -60 ps and path B has a slack 
of -50 ps
– if the two paths are tightly correlated, fixing A is 

sufficient till it reaches -50 ps since B will hardly 
dominate anywhere in the process space

– if the two paths are uncorrelated, fixing A is not enough 
since B has something to say in large parts of the 
process space

– in either case, optimizing mean slack as well as the 
sensitivity signature simultaneously is more powerful 
than just optimizing nominal slack
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The solution

Use criticality as a measure
– simple scalar between 0 and 1

– defined as the probability of a {node, edge, path} being 
on the critical path of a manufactured chip

– covers the entire process space

– can give guidance to optimization, test pattern generation

– can exploit conditional criticalities
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Manufacturing for predictable performance

Lower spec. limit Upper spec. limitNominal spec.
Cp and Cpk (Process Capability Indices) measure manufacturing 
predictability

Manufacturing typically outperforms spec. limits
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Testing

Critical

Critical

Each point in the process space can have a unique 
critical path

How to come up with a set of test vectors that tests
for parametric variations in all parts of the process 
space?

How to measure coverage thereof?

How to test against workload-related defects?

How to test against fatigue-related defects?
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Conclusions

Pessimism
reduction

Yield vs. performance
tradeoffs

Exhaustive corner
checking

Infrastructure for
statistical optimization

Sensitivity analysis

Complete process
coverage
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Guidance for testing,
robustness

Clock skew checker


