The Impact of Interstratal Interconnect Density on the Performance of Three-Dimensional Integrated Circuits

Viet Nguyen and Phillip Christie Philips Research Leuven S.L.I.P. 2005, San Francisco 2-3 April 2005

Outline

- Introduction
- Method for system-level performance evaluation
- Wire-length distributions
- Results
 - System-level performances of 2D, ideal, semi-ideal and realistic 3D-ICs
 - Recently published data + benchmarking
- Conclusions

Introduction

- Signal delay, high power consumption are the problems associated with long, thin, dense interconnects
- Solutions under investigation
 - Optical interconnect, carbon nanotubes...
 - 3D-IC

2D-IC 3D-IC **Philips Research Leuven**

Interconnection issues in 3D-IC #1

High-aspect-ratio through-wafer vias

Misalignment between device layers

Interconnection issues in 3D-IC #2

Example of state-of-the-art die-to-die via dimensions

Via diameter: ~5µm Via height: ~50µm Via pitch:~10µm

45-nm CMOS cell size: ~1.5µm x 1.5µm

Vertical routing in a 3D-IC at 45-nm node is limited

What are the consequences on 3D-IC performance

Method for system-level performance evaluation

Philips Research Leuven

Example of a wire-length distribution

2D wire-length distribution – Davis model

 $f_{2D}(l) = \Gamma M_{2D}(l) I_{2D}(l)$

Number of gate pairs separated by distance l

Expected number of interconnects between two gates

l = 13 gate pitch

3D wire-length distribution – Rahman model

Stratum 1

Stratum 2

Stratum 3

3D wire-length distribution – Rahman model

Average values for N_{A, B, C}

$$\begin{split} N_{A3D} &= 1 \\ N_{B3D}(l) \approx \frac{1}{S} \begin{bmatrix} N_{B2D}(l) + 2N_{B2D}(l-t_s)u(l-t_s) + \dots + 2N_{B2D}(l-(S-1)t_s)u(l-(S-1)t_s) + \\ N_{B3D}(l) \approx \frac{1}{S} \begin{bmatrix} N_{B2D}(l) + 2N_{B2D}(l-t_s)u(l-t_s) + \dots + 2N_{B2D}(l-(S-2)t_s)u(l-(S-2)t_s) \\ + \dots + N_{B2D}(l) \end{bmatrix} \\ N_{C3D}(l) \approx \frac{1}{S} \begin{bmatrix} N_{C2D}(l) + 2N_{C2D}(l-t_s)u(l-t_s) + \dots + 2N_{C2D}(l-(S-1)t_s)u(l-(S-1)t_s) + \\ N_{C3D}(l) \approx \frac{1}{S} \begin{bmatrix} N_{C2D}(l) + 2N_{C2D}(l-t_s)u(l-t_s) + \dots + 2N_{C2D}(l-(S-2)t_s)u(l-(S-2)t_s) \\ + \dots + N_{C2D}(l) + 2N_{C2D}(l-t_s)u(l-t_s) + \dots + 2N_{C2D}(l-(S-2)t_s)u(l-(S-2)t_s) \\ + \dots + N_{C2D}(l) \end{bmatrix} \end{split}$$

A. Rahman and R. Reif, IEEE Transactions on VLSI Systems, Vol. 8, No. 6, p. 671, (2000)

Philips Research Leuven

Observations

Observation 1: Transformation of Rahman model

$$N_{B3D}(l) = N_{B2D}(l) + \frac{1}{S} \sum_{i=1}^{S-1} [2(S-i)N_{B2D}(l-it_s)u(l-it_s)]$$
$$N_{C3D}(l) = N_{C2D}(l) + \frac{1}{S} \sum_{i=1}^{S-1} [2(S-i)N_{C2D}(l-it_s)u(l-it_s)]$$

Contribution of the 3rd dimension

Observation 2: In reality

Limited number of interstratal interconnects

Contribution of the 3rd dimension will be much less

Concept of probability of connection to other strata

Observation 2: Example

Stratum 1

Stratum 2

Stratum 3

3D wire-length distribution – New model

 $N_{A3D} = 1$

Remote stratum has remote interconnection chance

$$N_{B3D}(l) = N_{B2D}(l) + \frac{1}{S} \sum_{i=1}^{S-1} \left[2(S-i) N_{B2D}(l-it_s) u(l-it_s) P_{density}^{i} \right]$$

$$N_{C3D}(l) = N_{C2D}(l) + \frac{1}{S} \sum_{i=1}^{S-1} \left[2(S-i) N_{C2D}(l-it_s) u(l-it_s) P_{density}^i \right]$$

Examples

 $P_{density} = 1$ --- Ideal case, back to Rahman model $P_{density} = 0.5$ --- Semi-ideal case $P_{density} = 0.1$ --- Realistic case Chance to have a direct connection to the next stratum. This depends on the interstratal interconnect density

CMOS045 dimensions \rightarrow Interstratal interconnect pitch \leftarrow

P_{density} = 1 --- Pitch ~ 1.5 μm
P_{density} = 0.5 --- Pitch ~ 3 μm

 $P_{density} = 0.1 - Pitch \sim 15 \mu m$

Wire-length distributions of 2D, ideal, semi-ideal and realistic 3D-ICs

Wire-length distributions

Method for system-level performance evaluation

PHILIPS Results

Delay versus architectures

- Ideal 3D interconnect architecture only shows a modest performance improvement (approx. 10%)
- Realistic 3D interconnect architecture does not improve performance
- Increase number of strata does not significantly improve performance

Recently proposed dimensions & properties for 45-nm CMOS

Philips Research Leuven

Recently published data on 3D-IC Performance of 3D iA32 microprocessor

2D floor plan of a deeply pipelined iA32 core

3D floor plan of a deeply pipelined iA32 core

#1

Recent published data on 3D-IC

Performance of 3D iA32 microprocessor

Required die-to-die via pitch (µm) density in 90nm process

D. Nelson et al, IEEE International Conference of Computer Design ICCD2004, Oct 2004, San Jose, CA

#2

Philips Research Leuven

Benchmarking

	Our analysis	Published data
Technology node	45-nm	90-nm
Circuit type	Random logic network	Deeply pipelined microprocessor
Number of device layers	2	2
Via pitch density	1.5-µm; 3-µm; 15-µm	Minimum: 9 µm
Performance improvement	1.5-µm via pitch: 10% 3-µm via pitch : - 0% 15-µm via pitch: -15%	15%

Conclusions

- Interstratal interconnect density plays a crucial role in determining the performance of 3D random logic networks
- It is indicated that serious efforts need to be spent on realizing high density interstratal interconnect for CMOS045 and smaller nodes in order to benefit from 3D architecture
- Increasing the number of strata does not significantly increase the performance of a 3D-IC

Acknowledgement

• Virtual Technology Project members:

- Aatish Kumar
- Anco Heringa
- Manish Garg
- Laurent Le Cam
- Gerben Doornbos
- Ranick Ng

PHILIPS 3D wire-length distributions

PHILIPS 3D wire-length distributions

PHILIPS 3D wire-length distributions

