#### A 3-D FPGA Wire Resource Prediction Model Validated using a 3-D Placement and Routing Tool

Young-Su Kwon, Payam Lajevardi, Anantha P. Chandrakasan, Frank Honore, and Donald E. Troxel

> Microsystems Technology Laboratory Massachusetts Institute of Technology

## Contents

- Introduction
- 3-D FPGA Architecture and CAD
- 3-D FPGA Wire Resource Prediction Model
- Experiments
- Conclusion

## Introduction

- Performance of FPGAs is limited by interconnection resource.
- 3-D integration of FPGAs overcomes interconnection limitation by locating instances in 3-D spaces.
- 3-D FPGA reduces total wirelength, improves speed and reduces power consumption by reduced switching capacitance.

#### **3-D Integration**



## **3-D FPGA Block Diagram**



# **3-D FPGA CAD Flow**



**Configuration bitstream** 

#### Total Wirelength (m)



## Critical Path Delay (ns)

|            | 2D      | 3D,L=2  | 3D,L=3  | 3D,L=4  |
|------------|---------|---------|---------|---------|
| addrgen    | 16.27   | 13.75   | 13.12   | 11.44   |
| bigkey     | 16.99   | 14.05   | 11.28   | 8.94    |
| clma       | 6041.08 | 3749.02 | 4381.79 | 4423.25 |
| diffeq     | 18.65   | 17.24   | 14.26   | 12.56   |
| dsip       | 9.48    | 4.33    | 5.26    | 6.91    |
| elliptic   | 373.75  | 72.47   | 55.90   | 66.98   |
| frisc      | 1614.48 | 243.26  | 198.64  | 367.36  |
| idct       | 350.12  | 114.01  | 153.94  | 79.36   |
| mac1       | 181.34  | 100.47  | 52.62   | 35.83   |
| mac2       | 847.35  | 745.84  | 311.27  | 289.85  |
| matrix     | 71.45   | 29.72   | 19.98   | 24.89   |
| rgb_interp | 9.56    | 6.95    | 6.44    | 6.69    |
| s38417     | 104.02  | 41.43   | 42.08   | 40.42   |
| s38584     | 595.49  | 44.20   | 68.99   | 20.22   |
| tseng      | 80.11   | 43.25   | 17.20   | 23.98   |
| vp2        | 88.86   | 85.40   | 31.09   | 79.12   |

# Wire Resource Prediction

- What is it?
  - Wire resource prediction model predicts the number of wires per channel in FPGAs based on the estimation of total wirelength.
- Where can we use it?
  - Pre-determine of the routability of a circuit
  - Planning FPGA architecture without running P&R repeatedly

#### **3-D FPGA Wire Prediction Model**



# n<sub>s</sub> for Routing Architecture

(a) 3-D FPGA in the previous model

(b) Our 3-D FPGA



Tile CLB CLB Slice Slice Switch Slice Slice З-D Slice Slice Slice Slice Tile CLB CLB Slice Switch Slice Slice Slice ы В С Slice Slice Slice Slice  $n_{\rm s}$  is the average number of

 $n_{\rm s}$  is the average number of active slices in a CLB

# Extension of Wirelength Model

 $f_{3D}(l,N) \propto I_{3D}(l)M_{3D}(l,N)$  (Not a closed form equation) Number of tile pairs separated by length *l* Number of nets with length *l* 

A tile with  $n_s$  slices becomes a basic unit. Rent's Rule  $T = kG^p$   $\longrightarrow$  Scale  $I_{3D}(l)$  by  $n_s n_s^p = n_s^{p+1}$ N is scaled down to  $N/n_s$  (N is the number of slices, not tiles)

$$n_s^{p+1} f_{3D}(l, N/n_s)$$

#### **Channel Utilization Factor**



Global router determines that net C can be routed but it is not possible in the detailed routing, "routing anomaly"

→ Channel is not fully utilized by the router.

#### Extended 3-D FPGA Wire Prediction Model



## **Experimental Results**

- 3-D FPGA CAD flow implementation
  - Technology mapper and XDL generation with Xilinx tools.
  - 3-D placement and routing is implemented with C.
- 3-D FPGA Architecture
  - 40x40 tiles with 3 strata.
  - Intra-stratum wire segment of "DIRECT" and interstrata wire segment of "VDIRECT"
- Benchmark circuits from LGSynth93 and ISPD2001

#### **Required Number of Wires/Channel**



#### Prediction Results of Required # Wires/Channel



## **Error Sources**

- Deviation in wirelength prediction is the error source.
- Variation of the utilization factor of routing tracks requires an equation for  $e_t$ .
- Sensitivity of *n<sub>s</sub>* is also an error source but it shows small variation around a fixed value.

#### **Deviation in Total Wirelength**



- Each net is routed sequentially with detours in global routing while the prediction model considers only point-to-point interconnection

#### Variation of $e_t$

*# avg. wires/channel # required wires/channel* 



## Sensitivity of n<sub>s</sub>



Ns

## Conclusion

- We propose extended 3-D FPGA wire resource prediction model.
- 3-D FPGA architecture and a placement and routing tool are used to validate the prediction model.
- The required number of wires per channel of prediction model shows an acceptable error compared with that of experimental results.

# Appendix

#### Placed and Routed Result

Visualization tool for 3D FPGA for rgb\_interp example on 3 strata, 6x6 tiles



## Total Wirelength (m)

|            | 2D    | 3D,L=2 | 3D,L=3 | 3D,L=4 |
|------------|-------|--------|--------|--------|
| addrgen    | 1.07  | 0.46   | 0.45   | 0.47   |
| bigkey     | 4.37  | 4.09   | 4.38   | 4.22   |
| clma       | 16.75 | 11.04  | 11.95  | 13.75  |
| diffeq     | 1.81  | 1.03   | 1.14   | 1.30   |
| dsip       | 2.58  | 2.73   | 2.83   | 1.98   |
| elliptic   | 7.94  | 5.55   | 5.48   | 5.54   |
| frisc      | 13.98 | 10.34  | 9.44   | 9.98   |
| idct       | 7.40  | 4.72   | 5.15   | 5.40   |
| mac1       | 8.56  | 4.91   | 4.84   | 5.12   |
| mac2       | 28.39 | 23.45  | 22.50  | 22.50  |
| matrix     | 1.11  | 0.56   | 0.59   | 0.63   |
| rgb_interp | 0.81  | 0.43   | 0.39   | 0.43   |
| s38417     | 8.37  | 3.70   | 3.85   | 4.61   |
| s38584     | 10.93 | 4.79   | 6.30   | 6.33   |
| tseng      | 1.79  | 0.93   | 0.88   | 1.05   |
| vp2        | 3.90  | 3.44   | 3.21   | 3.80   |