

IBM Microelectronics

Bounding the Impact of Transient Power Supply Noise in Static Timing Analysis Over a Realistic Activity Space

David Hathaway April 2, 2005

SLIP 2005

April 2, 2005

© 2005 IBM Corporation

19031	C. DIA.	CONTRACTOR OF CONTRACTOR		
		araala	otrov	
				IICS-
A Real and a second			00101	1100

_	
_	
-	

Outline

- Background and problem description
- Prior work
- This work
 - Modeling realizable patterns of activity
 - Determining peak voltage variation
 - Determining bounding timing conditions
 - Applications to design planning
- Remaining issues

Power supply networks as System-Level Interconnect

Power supply networks do communicate information

- Power demand in one place affects voltages in others

Tem	IKM		 - 4	
		-		-
and the second s	<u> </u>	-		
		_	_	-

Problem addressed

Determine maximum impact of transient power supply noise on chip timing

SLIP 2005

© 2005 IBM Corporation

Why is this becoming more important?

Power density is increasing (again)

Why Hot Chips Are no Longer "COOL" - Ray Bryant

Why is this becoming more important?

- Delay sensitivity to supply voltage is increasing
 - Due to voltage reductions needed to contain power density

Power Supply Noise – Voltage Response

A trivial network model demonstrates key noise characteristics:

What is the "circuit's view" voltage response to the switching current signature illustrated above?

Voltage Response At Circuit Terminals

SLIP 2005

Delay dependence on voltage

- Traditional models use a single supply voltage per gate
 - Reality is more complicated

Why is it hard to find the worst timing impact?

Naïve approach

- Determine worst voltage at each node (max Gnd, min Vdd)
- Time circuit with these voltages
- Problems
 - Timing test compare early/late clock/data
 - Worst slack (for setup test) when data is slow relative to clock

Max voltage drop Max delay

SLIP 2005

Max voltage drop gradient Worst slack

April 2, 2005

© 2005 IBM Corporation

15051	General Content	E CERTIFICATION CONTRACTOR		
	$\mathbf{N} \mathbf{A} = \mathbf{N} \mathbf{A}$	oroolo	otropi	00
				C.S.

		-		_
	-	_	_	_
			_	
	_	_	_	
	_			
_				

Outline

- Background and problem description
- Prior work
- This work
 - Modeling realizable patterns of activity
 - Determining peak voltage variation
 - Determining bounding timing conditions
 - Applications to design planning
- Summary

Use superposition to determine worst timing

- Vectorless Analysis of Supply Noise Induced Delay Variation, S. Pant, D. Blaauw, et. al., U. Michigan, ICCAD 2003
 - Bound current demand at each power network node
 - Simulate current impulse applied at each power network node
 - Model delay linearly with voltage
 - Use delay model & power network response to model path delay as function of current at each node in each cycle
 - Use linear optimizer to determine current profiles which give worst path delay
 - Use spatial and temporal superposition of voltage waveforms

-	-		 -
	-	=	 -
_	-	_	 -

Spatial superpositioning

- Compute voltage waveforms for different aggressors
- Add selected waveforms with no time shifting

Temporal superpositioning

- Compute voltage waveforms for one cycle of each aggressor (simulate until transients die out)
- Add time shifted copies of waveform to get impact of operation over many cycles

irm			-	
IXM	_			
	_	1000	-	
				STATE OF TAXABLE PARTY.
				_
	_	_	_	
			_	

Use superposition to determine worst timing

SLIP 2005

_	_		-
			-
			_

Limitations of prior work

- Cannot easily restrict analysis to realizable activities
 - Allows only linear constraints between current weights
- Path-oriented analysis
 - Subject to exponential path enumeration issues
- Assumes constant voltage within cycle
 - Loses high frequency variation

Constraints on realizable activities

 Example – either banks 0 & 1 switch or bank 2 switches or bank 3 switches

- Banks with worst effect differ for paths p1 and p2
- Cannot constraint total switching
 - S(0) + S(1) > S(2) or S(3) alone
- Cannot constrain relation between banks
 - S(0), S(1) > S(2) for p1
 - S(2) > S(0), S(1) for p1
- Selection of worst banks is not a linear problem

Constraints on realizable activities

Example – clock dithering to limit noise from clock gating

19031	C. DIA.	CONTRACTOR OF CONTRACTOR		
		araala	otrov	
				IICS-
A Real and a second			00101	1100

		-	_	_
_	-		_	-
			1. AL	
_				
		_		_
		_		_

Outline

- Background and problem description
- Prior work

This work

- Modeling realizable patterns of activity
- Determining peak voltage variation
- Determining bounding timing conditions
- Applications to design planning
- Summary

			_	_
	_		_	_
		_	-	
_		_	_ =	
_				_

Overview of our approach

- Identify "objects of interest" (OOIs)
 - Large or high power cores of SOC
 - Regions of random logic
- Simulate voltage drops due to each OOI
- Determine allowable patterns / sequences of activity for OOIs
 - Modeled as BDDs
- Determine max / min v(t) for each node
- Use min / max v to screen, find critical subnetwork
- Use block-based statistical timing with OOI activities as variables to refine timing
- Determine worst slack for each timing test within allowable sequences
- Reanalyze paths with nonlinear delay dependencies to validate / refine slacks

Simulating OOI currents

Use fast linear power grid simulator

- Uses fixed time step, explicit matrix inversion
 - Initial overhead
- Allows very fast simulation of many waveforms
- Changing OOI currents, location of application is very fast
- Changing power grid (or adding decoupling caps) is slower

Modeling allowable conditions

- Determine set of conditions which must be met
 - Model as Boolean functions of OOI activity in different cycles
 - Examples
 - No more than k of n memory banks switch in one cycle
 - Clock cannot have X cycles off followed by Y cycles on
- Represent AND of all conditions as BDD
 - One BDD for all chip constraints
 - Variables are activity of OOIs in particular cycles
 - Subsequent steps depend linearly on BDD size
 - ... so aggressively reorder for minimum size

23

Finding extreme voltages

- DFS traversal of constraint BDD
 - One traversal per node, per alignment in cycle
 - Assign weights to BDD variables based on voltage of node at alignment time due to OOI switching in a particular cycle
 - Determine extreme (min/max) value at each node

Finding extreme voltages

For each node / alignment

- $-\Delta V_i$ = delta voltage when OOI_i is active
- Min value $V_{min}(n)$ at BDD node n with variable I(n), children c0(n), c1(n):

_	_	

Finding extreme voltages

Example

=	_	
	\equiv	
_	_	
_		- V -

Finding extreme voltages

Example

_			
		-	the second se
	_	_	

Application to timing

1. Use min (late) / max (early) voltages to filter errors

- 2. Apply block-based statistical timing to remaining regions
 - Delay / Arrival times / slacks are functions of OOI activity $a_0 + a_1 \Delta X_1 + a_2 \Delta X_2 + \dots + a_n \Delta X_n + a_{n+1} \Delta R_n$
 - Max / min propagated statistically
 - Sample waveform voltages at mean arrival time
 - Result is slack equation for each test
 - Find worst slack by BDD traversal

		= =
-	-	
-		
_	_	= 7 =

Block-based statistical timing

Deterministic a С MAX ંગ •> b **Statistical** · sa С •> MAX +••) > b

Waveform sampling for delay calculation

April 2, 2005

			_	_
	_	_	_	_
		_	_	-
			-	
_		_	_ =	
_				

Applications to Design Planning

- Get OOI locations from floorplan
- Determine extreme voltages
 - Detailed paths not yet known, so can't apply to timing
 - Impose bounds on voltage

Modifications to fix errors

- Add decoupling caps
 - Only useful for short transient limit violations
- Move OOIs
- Impose restrictions on allowed activity patterns

Updating voltage extremes

	-	_	the second s
		_	
_	_		

(Some) remaining issues

- Current depends on voltage
 - Ignored by superposition approach
- Block-based statistical timing may not apply well
 - Need to validate predicted worst activity patterns
 - Fall-backs use path-based approach
- Picking the right set / granularity of OOIs
- Determining activity constraints
 - Need links to system-level modeling

Acknowledgements

- Thanks to many people in IBM working on these issues, and in particular:
 - Ivan Wemple
 - Chandu Visweswariah
 - Sani Nassif
 - Doug Stout
 - Kerim Kalafala