Prediction Model for Evaluation of Reconfigurable Interconnects in Distributed Shared-Memory Systems

Wim Heirman Ghent University, Belgium

SLIP'05, April 2-3 2005, San Francisco

Outline

- Introduction
- Reconfigurable Optical Networks
- Prediction Model
- Results
- Future work & conclusions

Architecture of a distributed shared-memory system

• Nodes:

- Processor
- Caches
- Main memory
- Network interface
- Interconnection network
 - Packet switched

Architecture of a distributed shared-memory system

'Remote' memory access: handled by the network interfaces, requires use of the interconnection network

Interconnect requirements

 Network latency is a major bottleneck:

> instruction (.5 ns) << local memory access (50 ns)

<< remote memory access
(500 ns)</pre>

5 Paris

SLIP'05, April 2-3 2005, San Francisco

Interconnect requirements

Non-uniform network traffic in space and time

=> Reconfigurable network?

SLIP'05, April 2-3 2005, San Francisco

Outline

- Introduction
- Reconfigurable Optical Networks
- Prediction Model
- Results
- Future work & conclusions

Reconfigurable Optical Networks

- WDM (wavelength division multiplexing)
 - Tunable lasers / detectors
 - Passive star coupler (PSC)

Reconfigurable Optical Networks

- WDM (wavelength division multiplexing)
 - Tunable lasers / detectors
 - Passive star coupler (PSC)

Reconfigurable Optical Networks

Photonic Crystal components (crossbar)

Reconfiguration in shared-memory machines

- Reconfiguration speed: up to 1 ms
- One memory access: < 1 μ s
- Locality needed in address streams!

(Traffic Temporal Analysis for Reconfigurable Interconnects in Shared-Memory Systems, W. Heirman et. al., Reconfigurable Architectures Workshop, April 4-5, 2005, Denver, CO)

Reconfiguration in shared-memory machines

Extra links (reconfigurable)

Reconfiguration in shared-memory machines

 Requirement: Reconfiguration time « reconfiguration interval « burst duration

Evaluating network performance

- Full-system simulations are needed:
 - Current statistical traffic models don't exhibit the 'bursty behavior' exploited here
 - 'Application speedup' cannot be derived from network performance alone
- The simulation needs to model tens of processors, caches, and the interconnection network
- Different benchmarks

Evaluating network performance

Evaluating just one set of network parameters takes hours of simulations...

How can we do this faster?

Derive performance for several sets of network parameters from one simulation!

SLIP'05, April 2-3 2005, San Francisco

Outline

- Introduction
- Reconfigurable Optical Networks
- Prediction Model
- Results
- Future work & conclusions

Estimate extra link placement: delta t = 1 n = 2 delta t = 2 n = 4 time

Parameters: reconfiguration interval (delta t), number of extra links (n), link placement algorithm

19 Paris

• Estimate new memory access latency for each transaction:

No change

No change(!)

Reduced access time

Predict application speedup:

Outline

- Introduction
- Reconfigurable Optical Networks
- Prediction Model
- Results
- Future work & conclusions

Assumptions

- Access latency is not hidden by out-of-order execution
- Average reduction factor is used for all improved memory accesses (2.13 for 4x4 torus network)
- Memory accesses require only 2 nodes
- Computation time remains constant
- Congestion is not modeled
- Any combination of extra links can be made
- Extra links are not used as part of a path

Results: application variability

 Correlation between computation time variability and prediction error is high, this could explain larger errors in some benchmarks

25 Paris

SLIP'05, April 2-3 2005, San Francisco

Results: different parameters

Reconfiguration interval

FFT benchmark, results for different reconfiguration intervals and # extra links: good relative prediction

Outline

- Introduction
- Reconfigurable Optical Networks
- Prediction Model
- Results
- Future work & conclusions

Future work

- Access latency is not hidden by out-of-order execution
- Average reduction factor is used for all improved memory accesses (2.13 for 4x4 torus network)
- Memory accesses require only 2 nodes
- Computation time remains constant
- Congestion is not modeled
- Any combination of extra links can be made
- Extra links are not used as part of a path

Conclusions

- Using our technique, good predictions can be made using much less time-consuming simulations
- Good relative accuracy over a range of parameters allows for quick design-space exploration
- Further refinements can be made by including application variability and congestion

29 Paris