Multilevel Full-Chip Routing with Testability and Yield Enhancement

Katherine Shu-Min Li, Chung-Len Lee, Yao-Wen Chang*, Chauchin Su and J. E Chen**

National Chiao Tung University, National Taiwan University*, National Central University**

- Interconnect plays a dominant role in deep submicron era
 - determines circuit performance and signal integrity
 - Delay Fault
 - Crosstalk Glitch Fault
- Interconnect Test
 - Board-level
 - System-level

Introduction (Cont'd)

IEEE P1500 standards

- provide structural support for core testing and interconnect testing in SoC
- Our Proposed Oscillation Ring (OR) Test Architecture
 - detects stuck-at and open, also delay and crosstalk glitch
 - measures delay period

Two Motivations

Testability Enhancement:

- Propose integrated multilevel routing framework with embedded oscillation ring (OR) test architecture
 - to detect stuck-at and open, also delay and crosstalk glitch
 - to measure delay period
- Yield Enhancement:
 - Propose Congestion-Control guided routing

Motivation for Testability Enhancement: OR Test Architecture for Interconnect (1/2)

Motivation for Yield Improvement (2/2)

Our Work

- Consider testability and diagnosability, manufacturability, and signal integrity simultaneously in the multilevel routing framework.
- Provide testability and yield enhancement solutions in the routing stage to both diagnose interconnects and improve density flexibility
- Present heuristics to balance and reduce congestion in routing for yield improvement

Our Work (Cont'd)

Propose a new testability-driven multilevel routing framework:

SPICE Simulation Waveforms

SoC Testing & DFT Lab.

P1500 Modified Wrapper Cells for SOC

Process Variation Effects On Oscillation Signals in Nanotechnology

NCTU / EE SoC Testing & DFT Lab.

P.15

Interconnect Modeling

- Interconnect Detection Model
 - Interconnect Model for Oscillation Ring Test (ORT)
 - 2-pin nets
- Interconnect Diagnosis Model
 - Interconnect Model for <u>O</u>scillation <u>Ring</u>
 <u>D</u>iagnosis (ORD)
 - Net segments

Interconnect Modeling

- Interconnect Detection Model
 - Interconnect Model for Oscillation Ring Test (ORT)
 - 2-pin nets
- Interconnect Diagnosis Model
 - Interconnect Model for <u>O</u>scillation <u>Ring</u>
 <u>D</u>iagnosis (ORD)
 - Net segments

Graph Model for Oscillation Ring Test

(a) Hypernets

(b) 2-pin nets

Interconnect Modeling

- Interconnect Detection Model
 - Interconnect Model for Oscillation Ring Test (ORT)
 - 2-pin nets
- Interconnect Diagnosis Model
 - Interconnect Model for <u>O</u>scillation <u>Ring</u> <u>D</u>iagnosis (ORD)
 - Net segments

Interconnect Diagnosis Model (ORD)

(a) Hypernets

(b) Interconnect Net Segments

Routing Model

Testability-Aware Integrated Multilevel Framework

Diagnosability-Aware by Katherine Shu-Min Li Routing Structure

(a) Router Diagnosis Model: 3 nets (b) Router Diagnosis Model based on Steiner Tree: 5 nets

MST vs. Shortest Path Tree

- MST
 - Has the smallest total wire length
 - May incur longer path length
- Shortest path tree (SPT)
 - May incur larger total wire length
 - Has the shortest path length
- Simultaneously minimizing total wire length and path length reduces the Elmore delay of a tree.

Recalling Modification

Recalling Modification

Recalling Modification

Recalling Modification

P.29

MINCOUNT_Shortest Path Algorithm with n(v) computation

MINCOUNT_SPA(G, dist, s)

- 1. Intialize_Source(G, s);
- **2. S** ← Ø;
- 3. $Q \leftarrow V[G];$
- 4. while $\mathbf{Q} \neq \emptyset$
- 5. $u \leftarrow \text{Extract}_Min(Q);$
- **6.** S ← S ∪ {*u*};
- 7. for each $v \in Adj[u]$
- 8. Count_Nodes(*u*, *v*, *dist*);

Count_Nodes(*u*, *v*, *dist*)

- 1. if $d(v) \ge d(u) + dist(u, v)$
- 2. $d(v) \leftarrow d(v) + dist(u, v);$

3. if
$$n(v) \ge n(u) + node(u, v)$$

4.
$$n(v) \leftarrow n(u) + node(u, v);$$

5. record *u* as the predecessor routing region of *v*.

C Testing & DFT Lab.

Cost Metric for Routing Density Control

Cost Function in Uncoarsing Stage

$$\alpha(R_e) = \sum_{e \in R_e} c_e$$

$$c_{e} = \begin{cases} \frac{1}{2^{[(p_{e}/t)-d_{e}]}} & d_{e} < (p_{e}/t) \\ 1 & d_{e} \ge (p_{e}/t) \end{cases}$$

• $\alpha: E_i \rightarrow R$

*R*_e

- c_e: congestion of edge
- *p_e:* capacity of nets

Cost Function in Coarsing Stage $\beta(R_e) = \sum_{e \in R_e} (a \cdot c_e + b \cdot o_e)$

a, *b*: user-defined parameters

P.31

An Illustrated Example

$$f_{i} = f \times \frac{n_{i}}{n}$$
$$\varepsilon = \frac{1}{f_{\min} \times T_{0}} \leq \zeta$$

- *f_i*: frequency of the ith oscilation ring
- *n_i*: counter's content of the ith oscilation ring
- ε: counter's maximum measurement error
- ξ: delay measurement resolution
- Let 4 MHz≤ f_i ≤400 MHz, f_{min} = 4 MHz, ξ=0.001, thus, n_i =1/ξ=1,000, we have T₀=250µs.

Experimental Results

- Testability enhancement of interconnect detection and diagnosis
- Congestion control for multi-objective optimization

Experimental Results by Katherine Shu-Min Li for Testability Enhancement of Interconnect Detection and Diagnosis

Circuit		Stat	tistics		#rings constructed for testability $ R_t $ & diagnosis $ R_d $			
	#core #pad #hyp #2-pin			<i>R_d</i>				
ac3	27	75	211	416	133(33.3ms)	374(93.5ms)		
ami33	33	42	117	343	242(60.5ms)	303(75.8ms)		
ami49	49	22	361	475	156(39ms)	386(96.5ms)		
apte	9	73	92	136	73(18.3ms)	122(30.5ms)		
hp	11	45	72	195	81(20.3ms)	164(41ms)		
xerox	10	2	161	356	218(54.5ms)	342(85.5ms)		

Experimental Results

- Testability enhancement of interconnect detection and diagnosis
- Congestion control for multi-objective optimization

Routing Benchmark Circuits

	Size (mm)	#Layers	#Nets	#Pins
Circuit				
Mcc1	39000×45000	4	1694	3101
Mcc2	152400×152400	4	7541	25024
Struct	4903x4904	3	3551	5717
Primary1	7552x4988	3	2037	2941
Primary2	10438x6468	3	8197	11226
S5378	4330x2370	3	3124	4734
S9234	4020x2230	3	2774	4185
S13207	6590x3640	3	6995	10562
S15850	7040x3880	3	8321	12566
S38417	111430x6180	3	21035	32210
S38584	12940x6710	3	28177	42589

Routing Density Distribution for MCC1 with Absolute Net Counts

Routing Density Distribution for MCC1 with Normalized Net Counts

Comparison of Maximum Density with both Maximum Delay and Average

Circuit	(A) Per	(B) Routability-Driven [LIN]				(C) Proposed Balanced Density with 100% routability						
	d max	davg	#PEAK _Nets	CPU	d max	davg	#PEAK _Nets	CPU	d max	davg	#PEAK _Nets	CPU
Mcc1	5.E+07	1.E+07	181	223.68	2.03E+0 8	3.32E+0 7	61	77.11	2.03E+08	3.33E+0 7	45	72.63
Mcc2	7.E+07	5.E+06	274	5964.2	8.46E+0 7	5.12E+0 6	135	2855.5	8.51E+07	5.11E+0 6	96	2592.34
Struct	1.E+06	7.E+04	32	307.91	1.52E+0 6	7.13E+0 4	9	56.33	1.52E+06	7.13E+0 4	7	56.53
Primary 1	3.E+05	3.E+04	51	241.96	7.00E+0 5	5.51E+0 4	17	63.9	6.99E+05	5.50E+0 4	15	64.36
Primary 2	4.E+06	2.E+05	91	1808.56	3.92E+0 6	2.09E+0 5	28	298.17	3.91E+06	2.09E+0 5	25	295.32
\$5378	9.E+04	6.E+03	49	23.28	8.91E+0 4	6.39E+0 3	17	4.13	8.94E+04	6.41E+0 3	15	4.29
S9234	1.E+05	9.E+03	61	16.78	2.53E+0 5	1.19E+0 4	15	2.91	2.53E+05	1.19E+0 4	14	2.9
S13207	4.E+05	2.E+04	114	65.45	4.64E+0 5	2.04E+0 4	30	14.44	4.64E+05	2.03E+0 4	27	14.57
S15850	6.E+05	3.E+04	140	181.82	2.66E+0 6	6.68E+0 4	30	22.04	2.66E+06	6.67E+0 4	26	21.77
S38417	5.E+05	3.E+04	272	741.53	8.52E+0 6	3.94E+0 5	27	50.02	8.52E+06	3.94E+0 5	23	50.08
S38584	2.E+06	6.E+04	295	1453.8	1.76E+0 8	1.25E+0 7	31	127.8	1.76E+08	1.25E+0 7	29	122.5
Compa rison	0.27	0.32	4.84	3.34	1.00	1.00	1.24	1.08	1	1	1	1

Comparison of Routing Statistical Density

Circuit	(A) Performance-Driven [LIN]				(B) Routability-Driven [LIN]				(C) Proposed Balanced Density with 100% routability			
	#AvgN ets_v	#AvgN ets_h	σν	Qµ	#AvgN ets_v	#AvgN ets_h	σ	Qµ	#AvgN ets_v	#AvgN ets_h	σ	$\mathbf{Q}_{\mathbf{p}}$
Mcc1	28.19	31.78	20.59	24.35	10.03	11.5	10.45	10.82	9.91	11.33	7.58	7.33
Mcc2	39.35	44.05	37.26	46.98	19.39	21.65	23.53	25.8	18.74	20.88	17.3	18.54
Struct	4.97	4.86	4.62	5.03	1.42	1.41	1.24	1.67	1.42	1.41	1.07	1.59
Primar y1	2.29	1.74	3	5.67	0.7	0.6	1.05	1.95	0.7	0.6	1.2	1.8
Primar y2	7.22	7.49	5.56	18.23	2.05	1.85	1.59	4.57	2.05	1.85	1.56	4.45
S5378	12.53	13.46	9.16	8.4	4.38	3.44	3.45	2.13	4.4	3.46	3.44	2.1
S9234	14.16	9.99	12.91	7.04	3.95	2.56	3.25	1.62	3.95	2.56	3.24	1.6
S13207	28.43	20.49	18.4	11.08	9.3	5.93	5.77	2.76	9.29	5.92	5.23	2.81
S15850	36.61	34.48	23.89	20.42	10.29	7.41	5.63	2.92	10.31	7.41	5.39	2.91
S38417	44.58	27.38	37.36	27.94	7.31	4.27	4.75	2.17	7.3	4.27	4.44	2.18
S38584	43.99	30.53	35.93	20.12	9.06	5.8	5.74	2.86	9.05	5.79	5.43	2.88
Compa rison	3.40	3.46	3.73	4.05	1.01	1.01	1.19	1.23	1	1	1	1

Conclusion

- Present an effective multilevel routing framework
 - Embedded OR Scheme to form prerouting and postrouting stage
 - Show that the embedded oscillation ring test and diagnosis scheme is feasible based on the simulation results with TSMC .18 µm process technology
 - OR scheme achieves 100% fault detection coverage and maximal diagnosability for testing interconnects in SoC
 - Congestion Control in bottom-up and top-down two stages
 - Apply a congestion-driven routing algorithm to reduce the multiple-fault probability, CMP and OPC induced effects, and crosstalk effects for yield enhancement

Thank you!

