

Package level Interconnect Options

J.Balachandran,S.Brebels,G.Carchon, W.De Raedt, B.Nauwelaers,E.Beyne

> SLIP 2005 April 2 –3 Sanfrancisco,USA

Challenges in Nanometer Era

Integration capacity ~ *billion* transistors
Operating frequencies ~ μwave (*GHz*)

- Communication bottleneck
 - Interconnect delay far exceeds scaled transistor delay
 - Latency spanning multiple clock cycles
 - Power consumption

Computer architecture is all about Interconnect

Prof. William J. Dally, (Stanford university)@ HPCA Panel February 4, 2002

□ (Interconnect) Challenges in Nanometer Era

Review of contemporary solutions

Interconnect Scaling & Motivation for Packaging Approach

WLP Technology

Performance Comparison

Applications

Conclusion

Scaling decreases the repeater-less Communication radius

© imec 2005

Metal Interconnect Signal Propagation Characteristics

- Delay normalized to near speed of light delay
- Fn frequency normalized as $\sqrt{6.28f(L/R)}$
- Speed of light propagation within 'tolerable' attenuation levels

RC vs. LC Characteristics

Attribute	RC Lines	LC Lines
Signal propagation	Diffusion – slow	Near speed of light transmission (Limited only by dielectric constant of the ILD)
Dispersion	High	Low
Attenuation	High	Low
Delay with length	Quadratic	Linear
Repeaters	Required (depending on distance)	Not required
Return path	Not significant	Significant
Pulse response	Poor	Good
Туре	On-chip interconnects	Off-chip interconnects

LC lines offer superior pulse response

1 – Spice simulation from measured S-parameters

LC regime occurs for XSectional Area > 1um²

130nm BPTM model for driver

Wiring sizing outperform Repeater Insertion

- Diminishing returns with repeaters for increasing wire x-section
- Below red line wire sizing outperforms repeaters

Wide Gap in the interconnect Hierarchy

Fat wires on-chip?

- Technologically challenging
- Signal integrity
- Cost

Bridging the Interconnect gap with Wafer Level Packaging

Fat wires on-chip?

- Technologically challenging
- Signal integrity
- Cost

WLP Concept

- WLP wiring layers are post processed on top of active wafer
- Modular approach to wire stacking
- Thick low-k ILD with larger metal cross section

mec

WLP enables higher wiring density than conventional packages

WLP Technology in our Test chips

- 2 user routable layers
- Cu metals and low-k BCB dielectric ($\varepsilon_r = 2.65$)
- Two process configurations
 - ✤ Config1 6 masks, IMPS T-lines
 - Config2 8 masks, Ta₂0₅ decoupling capacitors, Microstrip T-lines

□ (Interconnect) Challenges in Nanometer Era

Review of contemporary solutions

Interconnect Scaling & Motivation for Packaging Approach

WLP Technology

Performance Comparison

- Applications
- Conclusion

Metrics for Package-BEOL Comparison

□ Bandwidth (BW)

- No. of bits transmitted per second per wire

□ BW density

- BW across unit routing area

- Measure of wiring density

Latency

- Delay with respect to clock period

Power

3-7x BW improvement possible with **Packaging Approach**

$\eta \ge 1$ - signal integrity factor

Package Bandwidth is limited by register setup and hold times

© imec 2005

J.Balachandran et.al SLIP 2005

Package Level Interconnects Enable Single Cycle Communication

 $LT = D_{\text{int}} * F_{clk}$

$$\begin{split} LT &= latency \\ D_{int} &= interconnect \ delay \\ F_{clk} &= Clock \ frequency \ specified \ by \ ITRS \end{split}$$

Significant Power savings with Package level Interconnects

For comparing power, Capacitance ratio is derived as

Zo = characteristic impedance of transmission line Ci-on chip =On-chip global interconnect capacitance Rt,Ct – minimum sized driver output resistance and input capacitance

□ (Interconnect) Challenges in Nanometer Era

Review of contemporary solutions

Interconnect Scaling & Motivation for Packaging Approach

WLP Technology

Performance Comparison

Applications

Conclusion

Interconnect Options: Memory buses

Off-chip BW is limited – strong trend for more on-chip memories

Memories occupies significant die area

Micrograph of a leading Processor Source: ISSC 2002

- WLP interconnects allow low latency memory accesses spread across the die
- Repeater less communication enables routing over hard macro blocks
- Can be routed over sensitive analogue blocks
- Flexible floor planning
- Low power

Interconnect Options: Inter Tile Communication

- Exploit LC Transmission line properties of WLP interconnects
- NOC or Bus ?

Interconnect Options: Clock distribution

- First few levels of clock trees can be in WLP
- Inherent low rise time as compared to on-chip lines
- Low latency -> relaxed skew tolerance
- Low power

Interconnect Options: Power distribution

DC Current and Voltage requirements for ITRS Technology nodes

At 40nm node, to have 10% IR drop tolerance, Total wire Resistance should be less than 0.2milliohms! Package planes and lines can be used for power distribution

J.Balachandran et.al SLIP 2005

Conclusion

- Global interconnect delay and power delivery issues dominate nano-CMOS designs
- □ Reverse scaling enabled by WLP Packaging approach is promising :
 - Extends on-chip Wiring hierarchy
 - High BW @ low power and latencies
 - Simultaneously address signal and power distribution
 - However limited wiring density
- Options
 - Memory buses, Intertile Communication, Clock and Power distribution

Thank you

Acknowledgements:

Scott List, Maarten Kuijk, Franky Cathoor, Philip Christie, Mandeep Bamal

J.Balachandran et.al SLIP 2005