Predictions of CMOS Compatible On–Chip Optical Interconnect

Guoqing Chen, Hui Chen, Mikhail Haurylau, Nicholas Nelson, Philippe M. Fauchet, and Eby G. Friedman

Department of Electrical and Computer Engineering
University of Rochester

David H. Albonesi

Computer Systems Laboratory
Cornell University

NSF CCR-0304574 April 2, 2005 SLIP Conference
Agenda

- Introduction
- On-chip CMOS optical data paths
- Optical interconnect vs. electrical interconnect
- Conclusions
Agenda

- Introduction
- On-chip CMOS optical data paths
- Optical interconnect vs. electrical interconnect
- Conclusions
Multiple design criteria should be considered in the interconnect design process
Optical Interconnect

- Cost-effective
- CMOS-compatible
- High speed
- Compact
On-Chip Optical Interconnect

When and in what situation is optical interconnect better than electrical interconnect?
Agenda

- Introduction
- On-chip CMOS optical data path
- Optical interconnect vs. electrical interconnect
- Conclusions
On–Chip Optical Interconnect Data Path

Laser → Optical Modulator → Waveguide → Photo Detector → Amplifier

On-Chip

Driver → Electrical Logic Cell

Electrical Logic Cell
Modulators – Choice of Structures

<table>
<thead>
<tr>
<th>Optical Structure</th>
<th>Electrical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach-Zehnder</td>
<td>p-i-n diode</td>
</tr>
<tr>
<td>Microresonator</td>
<td>MOS capacitor</td>
</tr>
</tbody>
</table>
P-i-n Diode: Microresonator

- Size (20 µm)
- Power consumption (mWs)
- CMOS compatible
- Speed (injection-based)

MOS Capacitor : Mach-Zehnder

- Speed (1 GHz and up)
- CMOS compatible
- Size (10 mm)
- Power consumption (watts)

Proposed Modulator Model

- High speed
- CMOS compatible
- Compact size
- Low power
Model of Modulator Driver

- Optical modulator is modeled as a lumped capacitor
- A series of tapered buffers used to drive C_M
- The size of the buffers is optimized for minimum delay
Si waveguide
- Consumes Si resources
- High refractive index ~ 3.5
 - Narrower waveguide
 - Slower light speed

Polymer waveguide
- Additional layer
- Low refractive index ~ 1.4
 - Wider waveguide
 - Faster light speed
Optical receiver is composed of a photodector and an amplifier circuit
Photodetector

- **Material:** Ge or SiGe
 - Longer wavelength absorption window
 - Compatible with CMOS

- **Structure:** Metal-semiconductor-metal (MSM)
 - High speed
 - Easy to fabricate
 - Reasonable quantum efficiency
Photodetector Optimization

- Response time
 - \(T_r = \sqrt{\tau_{tr}^2 + \tau_{RC}^2} \)
 - Transit time
 - \(RC \) response time

- Expected size
 - In ten years
 - 5 \(\mu \)m x 5 \(\mu \)m
 - Limited by the optical mode size

Amplifier Circuit

- Amplifier is designed to satisfy noise and bandwidth requirements *
 - BER: 10^{-15}
 - 3 dB bandwidth: 0.7 x bit rate (NRZ)

• Introduction
• On-chip CMOS optical data path
• Optical interconnect vs. electrical interconnect
• Conclusions
Electrical Interconnects with Repeaters

- Electrical interconnects are modeled as RLC transmission lines
- Three dimensions of freedom
 - Interconnect width
 - Number of repeaters
 - Size of repeaters
Minimum Delay of Electrical Interconnect

- Scaling has a small effect on the delay of global interconnect with repeaters
 - The minimum achievable delay is constant for advanced technology nodes: 20 ps/mm

\[L = 0.5 \text{ pF/\mu m} \]

Line spacing = \(W_{\text{min}} \)
Delay of Optical Interconnect

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology node</td>
<td>90 nm</td>
<td>65 nm</td>
<td>45 nm</td>
<td>32 nm</td>
<td>22 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator driver</td>
<td>83.7</td>
<td>45.8</td>
<td>25.8</td>
<td>16.3</td>
<td>9.5</td>
</tr>
<tr>
<td>Modulator</td>
<td>114.0</td>
<td>52.1</td>
<td>30.4</td>
<td>20.0</td>
<td>14.3</td>
</tr>
<tr>
<td>Waveguide</td>
<td>46.7</td>
<td>46.7</td>
<td>46.7</td>
<td>46.7</td>
<td>46.7</td>
</tr>
<tr>
<td>Photo-detector</td>
<td>1.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Receiver amplifier</td>
<td>37.5</td>
<td>16.9</td>
<td>10.4</td>
<td>6.9</td>
<td>4.0</td>
</tr>
</tbody>
</table>

| Total optical | 283.3 | 162.0 | 113.6 | 90.2 | 74.7 |

Unit: ps, Length = 10 mm

- Electrical interconnect delay: 20 ps/mm
Power Consumption in Optical Interconnect

- **Assumptions**
 - Input optical power ~ 0.2 mW
 - Power consumption in the optical interconnect is independent of interconnect length
 - Optical power loss in waveguide is ignored

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology node</td>
<td>90 nm</td>
<td>65 nm</td>
<td>45 nm</td>
<td>32 nm</td>
<td>22 nm</td>
</tr>
</tbody>
</table>

| Transmitter | 177.5 | 18.4 | 8.6 | 6.0 | 5.0 |
| Receiver | 0.4 | 0.3 | 0.2 | 0.3 | 0.3 |

Total

| 177.9 | 18.7 | 8.8 | 6.3 | 5.3 |

Unit: mW
Power-Delay Product (PDP)

Length = 10 mm
Bandwidth Density

- Bandwidth density
 - The ability to transmit data through a unit width
- The maximum bit rate is the clock rate
- Wavelength division multiplexing (WDM)
 - Four additional channels for each new technology node
Critical Length

- Critical length
 - The length beyond which optical interconnect is advantageous over electrical interconnect

![Graph showing normalized critical length against year with 1/3 \(l_{\text{edge}} \)](image)
Agenda

- Introduction
- CMOS compatible on-chip optical data path
- Performance prediction of optical interconnect compared with copper interconnect
- Conclusions
Conclusions

- Predictions of CMOS compatible on-chip optical interconnect are presented
 - Device models are described
 - Delay, power, and bandwidth are analyzed
- Modulator is the key component in an on-chip electro-optical system
- WDM is necessary for improving the bandwidth density of the optical interconnect
- The critical length is about 1/3 of the chip edge length at the 45 nm technology node
Backup
Electrical Structures

\[\Delta n_{\text{eff}} = \Delta n \ast \sigma \]

\begin{itemize}
 \item **P-i-n diode**
 \begin{itemize}
 \item Uniform injection over large areas, high \(\Delta n_{\text{eff}} \)
 \item Slow (20 ps and higher)
 \end{itemize}
 \item **MOS capacitor**
 \begin{itemize}
 \item Carrier concentration varies in small area.
 \item Very fast
 \end{itemize}
\end{itemize}

Optical Structures

- Mach-Zehnder interferometer
- Destructive interference
 - condition: $\Delta \phi = \pi$

 \[L = \frac{\lambda}{4\Delta n_{\text{eff}}} \]

- Micro-resonator
- Wavelength selective
- Compact

Optical Part: Microresonator

- Compact
- Wavelength selective

Category of Photodetectors

♦ p-n Photodiodes

♦ p-i-n Photodiodes

♦ Metal-semiconductor-metal (MSM)
 – High speed
 – Easy fabrication
 – Reasonable quantum efficiency
Delay and power of an optical receiver

- For MSM interdigitated photodetector, response time is

\[T_r = (\tau_{tr}^2 + \tau_{RC}^2)^{1/2} \]

- Transit time \(\tau_{tr} = tX/2V, \)
 - \(V: \) carrier drift velocity
 - \(X: \) drift distance corrective coefficient
- RC response time \(\tau_{RC} = 2.2RC \)

Delay is \(T_D = 0.315T_r \)

- Delay is \(T_D = 0.693 / (2 \pi \Delta f) \)
- Power is

\[\text{Prec} = \left(\frac{W_{TIA}}{W_{min}} \right) I_{dsat0} V_{dd} + \left(I_{bias} V_{dd} + I_{ph} V_{bias} \right)/2 + N_{inv} I_{dsat0} V_{dd} \]
Electro-optical effects in silicon

Electroabsorption

Electrorefraction

Optical modulator – Mach-Zehnder interferometer structure
Optical modulator – Mach-Zehnder interferometer structure

\[n_0 \]

\[n_0 + \Delta n \]
Propagation delay – both structures

Blue line: M-Z interferometer

\[T_{pi} = \frac{L}{c} n_{si} \]

Red line: Microresonator

\[\Delta t \Delta \Omega \geq \frac{1}{2} \]

\[\Delta n \]
Microcavity-based modulator (Barrios et. al)

- Size (20 µm)
- Power consumption (mWs)
- CMOS compatible
- Speed (injection-based)
Assumption 1:
Modulator is a sinc mode field can be

\[E_z(x, y) = \sin\left(\frac{a - x}{2a} \pi\right) \sin\left(\frac{a - y}{2a} \pi\right) \]