## Invited Talk Optical Solutions for System-Level Interconnect

#### <u>Ian O'Connor</u>, F. Gaffiot, F. Mieyeville G. Tosik, F. Tissafi-Drissi, M. Brière

Laboratory of Electronics, Optoelectronics and Microsystems Ecole Centrale de Lyon 36 avenue Guy de Collongue, F-69134 Ecully, France

## Outline

#### Context and motivations for optical interconnect

- ITRS
- Optical interconnect technology
- Target applications
- Clock distribution
  - Structure and global design methodology
  - Interface circuit characteristics
  - Calculating losses in passive devices
  - Electrical-optical comparison
- Wavelength-reconfigurable networks on chip
  - Target functionality
  - Modelling and design environment
  - Architecture of reconfigurable network





#### Context

the interconnect problem: "For the long term, material innovation with traditional scaling will no longer satisfy performance requirements. Interconnect innovation with optical, RF, or vertical integration ... will deliver the solution" (International Technology Roadmap for Semiconductors 2003)



#### The optical alternative

#### optical interconnect to:

- increase throughput
- reduce power dissipation
- alleviate thermal constraints
- reduce crosstalk
- decrease skew
- reduce signal distortion
- simplify place-and-route for complex circuits

#### but:

- requires high-speed low-power interface circuits
- process modifications
- few quantitative analyses exist





## Target applications

#### point-to-point (1-1) links?

- routing complexity
- number of repeaters
  - power
  - silicon real estate



#### broadcast (1-N) links (clock distribution)

K. Banerjee et al., Proc. IEEE, May 2001

- timing
- clock noise
- power and thermal issues
- network (N-N) links
  - throughput



15 February 2004



#### Structure of integrated optical interconnect

#### heterogeneous III-V on Si intégration



#### Passive photonic devices

#### couplers, filters, routers

- SOI guides
- Transmission at 1,55µm
- intra-chip optical links

signal transport = waveguides and couplers



# *l*-switch = add-drop filter

 $\lambda_i \rightarrow$ 

if  $\lambda_i = \lambda_k \blacktriangleleft$ 

- resonance mode  $\lambda_k$  depends on disc radius (um)

2 µn

→ if  $\lambda_i \neq \lambda_k$ 





#### Active devices



#### VCSEL

(vertical cavity surface emitting laser) :

- high-wavelength & low-threshold difficult
- coupling difficult (vertical emission)

## 850nm, 70uA threshold current, 2.6um diameter CMOS compatible VCSEL

(Liu, J.J. et al., Ultralow-threshold sapphire substrate-bonded top-emitting 850-nm VCSEL array, *IEEE Phot. Lett.*, 14, 1234, 2002)

#### **Microlasers :**

- heterogeneous integration (InP on Si) Technological simplification
- Coupling to passive SOI guide
- Thermal dissipation  $\rightarrow$  low threshold

#### Photonic crystals ...

C. Seassal et al., IEE Electron. Lett., 2001







## Optical interconnect design problems



- concurrent design of electronic and optical parts for optical interconnect
  - use of predictive models (technology does not yet exist)
  - generic design methodologies and models





## Outline

- Context and motivations for optical interconnect
  - ITRS
  - Optical interconnect technology
  - Target applications

#### **Clock distribution**

- Structure and global design methodology
- Interface circuit characteristics
- Calculating losses in passive devices
- Electrical-optical comparison
- Wavelength-reconfigurable networks on chip
  - Target functionality
  - Modelling and design environment
  - Architecture of reconfigurable network





### Clock distribution network (1-N)



#### **Optical receivers**



15 February 2004



#### Calculating the power budget

 the route to calculating overall optical interconnect power is based on required signal quality (BER)







#### **Determining TIA characteristics**

- simple analytical equations for transistor characteristics insufficient (>100% error)
- but extraction requires transistor-level schematics

## $R_q$ critical for power $C_d$ critical for data rate



synthesis

$$\sqrt{i_N^2} = \left(2q\left(I_{gate} + I_{dark}\right) + \frac{4kT}{R_f}\right)\frac{C}{4D} + 4kT\Gamma\frac{C^2}{16p^2DE}\frac{(2pC_T)^2}{g_m}$$

J.J. Morikuni et al., IEEE J. Lightwave Tech., July 1994





#### Photoreceiver front-end IP block



#### TIA synthesis



#### Fast inverter IP block



#### Predictive design space exploration

- sizing for process nodes 180-130-100-70nm : quantitative predictions for technological evolution
- use of BSIM3v3 transistor model parameters from UC Berkeley (Cao *et al.*, CICC 2000)
- more details at DATE (session 3D Tuesday 16:45)



ITHzW TIA design with identical specifications for different technology nodes: validate traditional "shrink" predictions



TIA design @ 70nm node for various BW requirements (all other specifications remain identical)





#### Losses in an optical link

- $L_{\text{TOTAL}} (dB) = L_{CV} + L_W + L_Y + L_B + L_{CR}$ 
  - Source-waveguide coupling coefficient
  - **Transmission Loss**
  - Y-coupler Loss
  - Bending Loss
    - Waveguide-detector coupling coefficient





 $-L_{CV}$ 

 $-L_{W}$ 

 $L_{Y}$ 

L<sub>B</sub>

 $L_{CR}$ 



#### Transmission loss

$$L_{\text{TOTAL}} (dB) = L_{CV} + L_W + L_Y + L_B + L_{CR}$$



K. K. Lee et al., Optics Letters, 2001





## Bending loss

$$L_{\text{TOTAL}} (dB) = L_{CV} + L_W + L_Y + L_B + L_{CR}$$







#### Other losses

- $L_{\text{TOTAL}} (dB) = L_{CV} + L_W + L_Y + L_B + L_{CR}$
- L<sub>CV</sub> Input coupling coefficient (50%=3dB)
- L<sub>Y</sub>
  Y-splitter loss (0.2dB)
- L<sub>CR</sub> Output coupling coefficient (87%=0.6dB)



#### Bonding issues

flip-chip is today the most effective and proven technique

- alignment down to 1um accuracy
- solder bumps under 10um diameter





- in the future:
  - molecular bonding
  - direct wafer bonding







## Investigation conditions and program

| Electric              | al CDN       | Optical CDN                                            |                             |  |  |
|-----------------------|--------------|--------------------------------------------------------|-----------------------------|--|--|
| Technology parameters |              | ITRS roadmap                                           |                             |  |  |
| Transistors           |              | BSIM3v3 and BSIM4 model<br>parameters [Berkeley Univ.] |                             |  |  |
| Metallic wires        | ITRS roadmap | Optical devices                                        | Existing<br>technology      |  |  |
|                       |              | InGaAs<br>Photodiode                                   | G8376-02<br>Hamamatsu Corp. |  |  |
|                       |              | (InGaAI)As/InP<br>VCSEL                                | Amann TU<br>Munchen         |  |  |

- comparison of optical and electrical clock distribution networks:
  - power vs. chip size
  - power vs. operating frequency
  - power vs. number of distribution points
  - power vs. technology node
  - power vs. sidewall roughness



15 February 2004



- comparing optical clock distribution power dissipation for varying chip size
- @70nm node, 5.6GHz, 256 drop points







- comparing optical clock distribution power dissipation for varying operating frequency
- @70nm node, 20mm chip width, 256 drop points





15 February



- comparing optical clock distribution power dissipation for varying number of drop points
- @70nm node, 5.6GHz, 20mm chip width



- comparing optical clock distribution power dissipation for varying technology node
- 20mm chip width, 256 drop points



- comparing optical clock distribution power dissipation for varying sidewall roughness
- @70nm node, 5.6GHz, 20mm chip width, BER=10<sup>-15</sup>



15 February 2004



## Clock distribution conclusions

- optical clock distribution gives a five-fold improvement in power dissipation at 5GHz
- this factor will increase as optical technology improves and operating frequencies rise
- where is work needed?

| optical source             | source efficiency<br>equal to 10-15%                                   |
|----------------------------|------------------------------------------------------------------------|
| passive optical components | trans. loss ~1.5db/cm<br>splitting loss ~ 0.2dB<br>coupling loss ~ 3dB |
| optical receiver           | TIA power dissipation<br>too high                                      |

more details at DATE Wednesday session 5G 12:00





## Outline

- Context and motivations for optical interconnect
  - ITRS
  - Optical interconnect technology
  - Target applications
- Clock distribution
  - Structure and global design methodology
  - Interface circuit characteristics
  - Calculating losses in passive devices
  - Electrical-optical comparison

#### Wavelength-reconfigurable networks on chip

- Target functionality
- Modelling and design environment
- Architecture of reconfigurable network





## Reconfigurable optical NoCs (N-N)



#### Microring resonator

2004

- depending on the disc material parameters and dimensions, several resonant wavelengths exist
- lightwave will couple into the disc (and then out via the other waveguide) if its wavelength is equal to one of the microring's resonant wavelengths
- otherwise there is no coupling and the lightwave propagates normally
- selectivity critical factor in number of channels
- estimation of sensitivity of  $\lambda_k$  to mismatch ...



## Microring selectivity and FSR



## Models for system design

- library of building blocks (Matlab and VHDL-AMS)
  - equation capture for all elements
  - parameter extraction for model simulation
  - simulation results: power, attenuation, data rate ...



#### Design environment







#### Photonic device simulation tools

2004



- 2D-3D FDTD (finite difference time domain) method
- simulation engine integrated into standard EDA environment (Cadence)
- parallel execution and memory bus usage optimization



#### Modelling and simulation of an optical crossbar

SLIP'04



15 February

2004



#### Injection in port #1





#### 4x4 optical cross-bar







#### 32x32 optical cross-bar

200µm

| nodo1 #iemode<br>fiemode2fi | 3 Flornfoda5 flor<br>amfada4 flornfoda6 | ribdo7 #iomibdo8<br>#iomibdo8 #iomik | Hombdoll ≴larnindal3<br>al@_¥larnindal2_Alom | Hombdo15 Hom<br>Hodo14 Blambda16 | Ado 17 #ombdo 1<br>#lombdo 18 filo | 19 #lombdo21 flan<br>mbdo20 #kombdo2 | nioda23 #iemioda<br>2 #iemioda24 #ie | 25 #ambda27 #km<br>imbda26 #lambda28 | Hombdo30 | lambda32 |
|-----------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------|----------|
| X N X                       | 쬐칋찐                                     |                                      | 凝図없                                          | 이 없 전 🖁                          |                                    | 지쓹지                                  |                                      |                                      |          | x        |
|                             |                                         |                                      |                                              |                                  |                                    |                                      |                                      |                                      |          |          |
|                             |                                         |                                      |                                              |                                  |                                    |                                      |                                      |                                      |          |          |
|                             |                                         |                                      |                                              |                                  |                                    |                                      |                                      |                                      |          |          |
|                             |                                         |                                      |                                              |                                  |                                    |                                      |                                      |                                      |          |          |
|                             |                                         |                                      |                                              |                                  |                                    |                                      | 철전충                                  |                                      |          |          |
| 옮꼬凝                         |                                         |                                      | 凝호절                                          | a Ka k                           |                                    | xXx                                  |                                      | 교실교                                  |          | x        |
|                             |                                         |                                      |                                              |                                  |                                    |                                      |                                      |                                      |          |          |
|                             |                                         |                                      |                                              |                                  |                                    |                                      |                                      |                                      |          |          |
|                             |                                         |                                      |                                              |                                  |                                    |                                      |                                      |                                      |          |          |

Total area for passive network: 0.146 mm<sup>2</sup>







## Conclusion

- optical links are moving into the chip
- first quantitative comparisons show an advantage for optical clock distribution over electrical schemes
- but is it enough?
- do we really need global clock distribution?
- optical network on chip promising:
  - scalable passive structure developed, test under way
  - low real estate, high throughput, should be full-duplex
- high-level models necessary for design (SystemC)
- watch this space for quantitative comparison
- more details at DATE:
  - Wednesday session 4E 10:30 and session IP3 11:00
  - Friday W2 Parallel optical interconnects inside electronic systems



