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INntroduction

2 On chip communication issues
m Bottleneck for high performance designs
m Bandwidth limited by on-chip busses

m Ratio of global interconnect delay to average clock period
continues to grow

a Solutions
= On-chip network
» Scalable interconnect bandwidth
m Interconnect pipelining
» Latch repeaters in wires
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On-chip Network

0 Network-on-Chip (NoC) provide

m Scalable interconnect bandwidth
m Structured pipelining and re-buffering

0 Global interconnects in an NoC require

m puffering and flow-control
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ASIC

a Wire optimization in an ASIC
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a Wire optimization in an ASIC having

m Multiple clock domain, bursty data behavior
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Problem Definition

0 Power-optimization of FIFO-based on-chip

communication links
m Clock frequency scaling
m Voltage scaling
m Sizing of FIFOs in the communication links
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Background - Terms

a FIFO:

m First-In-First-Out queue
m Synchronous FIFO are also called elastic buffers

a FIFO size:
m Maximum number of data elements in a FIFO

a Channel:
m One or more FIFO connected In series

Q Stage:
m Each of the FIFOs in the channel is called a stage
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Assumptions

a Synchronous system
m Source IP and destination IP run at the same clock frequency

m FIFO voltages and clock frequencies are scaled down to save
power

0 Discrete time system
m All events occur at positive edge of the clock

2 No data dropping
m Data in a FIFO waits if the next FIFO in the channel is full
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System Parameters

0 Queue behavior will depend upon
m Relative data production and consumption rates

a | : Average data production rate
O m: Average data consumption rate

a Throughput requirement
= Number of data items read per time unit
m Performance metric of the channel
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Channel Analysis

0 Designed an interconnect channel using an ASIC
methodology

Length of channel given by physical design information
Maximum frequency requirement constraint by the designer
Optimization results in 3 stage of latch repeaters
Replaced the latch repeaters with FIFOs to enable

» Data bursts, Flow control
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0 The FIFOs are sized to meet the throughput requirement
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Problem — revisited

a Power aware FIFO sizing methodology

m Choice of power optimal frequencies and voltages for the FIFO
stages

m Resizing of the FIFOs in the channel to recover the performance
» Performance loss due to clock scaling in the FIFO

m Relation between | and mand the clock scaling factor of the FIFO
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Power Optimization

a Dynamic power consumption in CMOS

Piyn=A;-C-V* . f

a Frequency and voltage are also related

(Vaa — Vi)
Vdd

f

0 Voltage and frequency island in the channel
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Transfer Blocking
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FIFO

o Can be formulated as a queueing network

a The queues in this work are M/M/1/K queues
m Difficult problem — no closed form solution

0 Analysis further complicated by
m Transfer blocking — Data walits if the next FIFO is full

0 Blocking increases with clock scaling
= Slow movement of data in the queue
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Effective | and m

Channel data rate = min{(\- f), (u- f)}

a | 4 effective value of |
a my: effective value of m

a | .sand my are obtained by simulation
m C simulator models the channel

Effective channel data rate

mind (Aegs - f)y (ters - )}
< min{(A- f), (k- f)}
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Effective |

Effective channel data rate

Electrical & Com

ENGINEERING

and m

LULLY CHRRTNN

0.4
min

0.2 0.3

0.5

0.6 0.7 0.8 0.9

(A, w)

mind (Aegs - f)y (ters - )}

min{(A- f), (- f)}



Limits on frequency scaling
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0 For afrequency scaled channel
= With no performance degradation

1 Theorectical upper bound
min()\effzueff) on a

Amaxr —

a Channel frequency can be lowered to meet the
effective channel data rate

0 The maximum possible value of a is less than a
m Attributed to transfer blocking
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Relative performance to a single frequency system

Electrical & Computer

ENGINEERING

Effect of transfer blocking

Performance degradation due to clock scaling
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0 Performance degradation proportional to a
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Throughput — a tradeoff

a For each min(l ,m, a is bounded

1 < o & D

0 Four values of a chosen between 1 and a

(Of’mcm: o 1) ;
a; =1+ ' g
T

a Three sets of system parameters were chosen
= min(l ,n) =0.2
= min(l ,nM =05
= min(l ,n)=0.8

max
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Throughput — a tradeoff

Throughput versus Alpha Trade-off
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Performance recovery: FIFO resizing

0 Increasing FIFO sizes improves performance
m Decrease in the occurrence of transfer-blocking

a Write and read rates are different for
beginning and end FIFOs

m Increasing their sizes have maximum impact on performance
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Performance recovery: FIFO resizing

a 3 stage FIFO channel is analyzed
m Each stage is of size 3 as a baseline for single clock design

0 The design methodology
m FIFQOs are voltage and frequency scaled to save power
» Results in throughput loss
m FIFOs are resized to recover the performance loss

a Trade-off between FIFO sizes and clock
frequency
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Cuﬁegie Mellon

Performance recovery: FIFO resizing

Performance Recovery by FIFO Resizing Performance Recovery by FIFO Resizing
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0 Total FIFO sizes Increase as a Increases
m The sizes of beginning and end FIFOs are most important
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Performance recovery: FIFO resizing

Performance Recuvery by FIFO Resizing
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Power consumption analysis

a2 Memory model used for the FIFO
m Power consumption in a FIFQO is proportional to no. of data words

Power «x \/n

0 FIFOs have different read and write clocks

Power < /- V? - (fin + fout)

a0 For a single clock design

N
Power, = K - Z Vg . (f+f)
=1

lectrical & u
O B 23



Power consumption analysis

0 For voltage and frequency scaled channel

m Voltages for the first and last FIFO are not scaled
f f
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Power consumption analysis

Relative Power Consumption (Power /Power )
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Power saving decreases as min(l , n) increases!
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Conclusions

0 Explored power-performance trade-off
m for interconnect channel containing multiple FIFO stages

a Transfer blocking causes | ; and m to be
less than | and mrespectively

0 Theoretical upper bound on a given by
1

Min(Xes s, ey s)

Oémaa: -

with no performance degradation

m Practical upper bound on a Is less than a ., due to transfer
blocking
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Conclusions

0 Voltage and clock scaling saves power

m Performance is lost due to clock scaling

m Performance is recovered by resizing of the FIFOs in the channel
m Resizing of the FIFOs at the beginning and end are critical

m FIFQOs in the middle should remain minimum size

0 Max power savings of 45.8%, 28.9%, 11.3%
m for min(l ,nm) of 0.2, 0.5 and 0.8 respectively

0 Power saving decreases as min(l , m increases
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