Investigating the Frequency Dependence Elements of CMOS RFIC Interconnects for Physical Modeling

B. H. Ong; C. B. Sia; K. S. Yeo; J. G. Ma; M. A. Do; E. P. Li

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Advanced RFIC(S) Pte Ltd, Singapore

Institute of High Performance Computing, Singapore

DISCLAIMER!

- Dr. Ong could not come due to compulsory service with the Singapore army
- I (Lou Scheffer) have prepared this summary of the paper, using the paper itself and my correspondence about with him about this paper earlier
- This is my interpretation of the work, not Dr. Ong's.
 - I have been unable to contact him by email for correction, clarifications, etc.
 - He has not even seen, much less blessed, this talk.
- So any mistakes here are my responsibility, and should not be blamed on Dr. Ong

Basic idea

- Use an analog technique called "S parameters" to measure interconnect
- Deduce a SPICE model from these measurements

- Some energy is reflected, some absorbed, some transmitted.
 - Reflected is S11 and S22
 - Transmitted is S12 and S21

Why do this?

- Some interconnect values are very hard to measure directly
- Dominated entirely by test fixtures
 - C of wires
 - L of wires
 - Resistance if not at DC
- S parameters can be cascaded, so effect of pads, bonding, etc. can be removed
 - Called "de-embedding"

What they built and measured

(d) 90 degree line

Figure 2: Interconnects test structures fabricated for the study in the work

Layer Thicknesses

S11 = reflection from the input port

S11 Magnitude Plot (Length 800um)

S21 = Transfer through the line

S21 Magnitude Plot (Length 800um)

Series Resistance

Self-Inductance

Series Self-Inductance (Length 800um)

Modeling the experimental data

Figure 7: Physical model of interconnect

Modelled S12

Modelled S12 Phase

Modelled reflection magnitude

S11 Magnitude Flot (Simulated Vs Measured)

Modelled reflection phase

What happens if you leave some elements out?

Conclusions (Ong's)

 Wire models can be well fit (S parameters or Spice) up to very high frequencies

Conclusions (mine)

- The models are well understood
- The hardware folks can measure all values we want
- So far they have measures of what the analog folks want
- If we cooperate, they could easily measure more 'digital' parameters
 - Over lower metal, not substrate
 - All layers and widths
- We need to cooperate with test structure folks