Investigation of Performance Metrics for Interconnect Stack Architectures

Puneet Gupta¹, Andrew B. Kahng¹, Youngmin Kim², Dennis Sylvester² ¹ECE Department, University of California at San Diego ²EECS Department, University of Michigan at Ann Arbor

Outline

Motivation

Delay and Bandwidth

- Via Blockage
- WLD and Wire Assignment (Avg. wire length for each layer)
- Bandwidth Metrics

Energy-Driven Metrics

Motivation

- Front-end dimensions set by lithography restrictions
- Back-end dimensions are often area/performance driven
 - Especially intermediate and global metal levels
- Front-end performance quantified with known metrics:
 - FO4 or ring oscillator delays
 - Ioff, Ion
- No comparable metrics for back-end
 - RC per µm ignores many issues
- Via blockage factor is important to consider

Delay and Bandwidth

Bandwidth or throughput-driven approach for the interconnect recently proposed

- Ho 01, Young 01, Lin 02
- All approaches are applied to one layer only (i.e., a top level)
- Ignore factors due to multilayer interconnect
 - via blockage
 - repeater insertion

Bandwidth and energy metrics <u>considering the entire</u> <u>multilayer interconnect stack</u> are required

Interconnect Stack

Source: Muddu

• We seek to develop metrics that can be used to compare back-end dimensions, and eventually to drive the selection of such dimensions

Standard Interconnect Delay Models

 Worst-case 50% delay of a minimum sized inverter driving an interconnect is (Pamunuwa 03)

$$t_{0.5} = 0.7R_{drv}(C_g + 4.4C_c + C_{drv}) + R_w(0.4C_g + 1.5C_c + 0.7C_{drv})$$

The number of repeaters is k and the size of each repeater is h, then

$$t_{0.5} = k \left[0.7 \frac{R_{drv}}{h} (\frac{C_g}{k} + 4.4 \frac{C_c}{k} + hC_{drv}) + \frac{R_w}{k} (0.4 \frac{C_g}{k} + 1.5 \frac{C_c}{k} + 0.7hC_{drv}) \right]$$

Via Blockage; Previous Work

• Via blockage factor (v_i) :

- Fraction of total available space that is not available due to via blockage effects on layer *i*
- A layer blocks 12% ~ 15% of the wiring capacity of every layer underneath it at constant pitch (Sai-Halasz)

 Via blockage is only severe on the lower metal layers (Chen et al.)

 $N_{v_wire} = 2[I(L_{\max}) - I(L_n)] \qquad \text{when } n \neq 0$ $N_{v_wire} = 2I(L_{\max}) - I(L_n) \qquad \text{when } n = 0$

Where $N_{v_{wire}}$ is the number of vias by wires, I(l) is cumulative interconnect density

Via Blockage, continued

Repeater insertion for long wires in the semiglobal and global interconnect layers is necessary for delay and slew constraints

$$N_{v_rep} = 2 \sum_{i=n+1}^{top_layer} \# of repeaters in ith layer$$

Total via blockage factor in nth layer

$$B_{v}(n) = \sqrt{N_{v_{total}} (2W + sI)^{2} / A_{c}}$$

Interconnect Technology Parameters

Parameters	130nm	90nm
Ac (cm^2)	0.98	0.98
#of gates	6.4M	12.87M
Vdd (V)	1.4	1.2
Id (mA/um)	1.2	1.0
# of nets	29.08M	58.15M
k (ILD)	3.6	2.9
p (Rents exponent)	0.6	0.6

Layer	130nm technology (nm)			90nm technology (nm)				
	Intel	IBM	TSMC	ITRS	Intel	IBM	TSMC	ITRS
1	350	320	340	350	220	245	240	210
2	448	400	410	350	320	280	280	210
3	448	400	410	450	320	280	280	275
4	756	400	410	450	400	280	280	275
5	1120	400	410	1340	480	280	280	275
6	1204	800	900	1340	720	560	840	820
7	-	-	-	-	1080	1120	840	820

Via Blockage Projections

● 2~5x times larger blockage at the bottom layer
 ● IBM and TSMC show more significant via blockage
 → less tapered nature (many iso-pitch layers)

WLD and Wire Assignment

- Typical wire lengths on a given layer can be considerably different \rightarrow delay as well
- Davis's wirelength model and a top town wire assignment technique (Venkatesan 01) are applied

$$A_{av} = e_w A_c = \mathbf{c} \ P_n \sqrt{\frac{A_c}{N_g}} \int_{L_{n-1}}^{L_n} l \cdot i(l) \ dl = A_{req}$$

Average wire length on each layer is used as typical wire length on the layer

Average Wire Length

- Intel and ITRS show much larger average wire length for all layer
 - top down wire assignment
 - Wider pitch at top two layers for Intel/ITRS

Bandwidth Metrics

- Represents the rate at which information can be transferred through channel
 - # of wires or bits per second
- Delay_n is the wire delay calculated at the average wire length in a given layer n
 - Driver is sized to match wire cap. using optimal repeater as baseline
- N_{wire} is the number of parallel wires

$$BW_n = (\frac{1}{Delay_n}) \times N_{wire} = \frac{1}{Delay_n} \times (\frac{chip \ side \ length}{pitch_n})$$

- If $L_{avg} > maximum$ allowable distance between repeaters \rightarrow insert optimal repeaters
- Via blockage reduces the wiring resources directly

$$BW_n = (\frac{1}{Delay_n}) \times (\frac{chip \ side \ length}{pitch_n}) \times B_v(n)$$

Bandwidth

- IBM and TSMC show better bandwidth
 - Shorter average wire length and greater wiring density overcome larger RC per unit length
- Bandwidth in lower layers is much higher than in upper layers
 - Shorter wires and greater wiring density

Normalized Bandwidth

- Simply summing BW of individual layers is not a good way to assess the performance \rightarrow normalization required
- The number of segments:
 - *"routing demand"* for a given layer

$$N_{seg} = \frac{\sqrt{A_c}}{L_{avg}}$$

Normalized
$$BW_n = \frac{BW_n}{N_{seg}}$$

Normalized Bandwidth

Intel and ITRS stacks are superior when considering normalization

- They have fewer segments due to longer average wire length on all layers
- Their pre-normalized BW was already penalized for longer wirelengths
- Normalized bandwidth is more consistent across the stack (ignoring metal l where density is main criteria)

Statistics of Normalized BW

~15% variation in total normalized BW across technologies
Somewhat smaller than spread of front-end metrics like FO4 and Ion

Energy-Driven Metrics

The increasing use of repeaters on global and even intermediate layers

Reduces delay and maintains good signal integrity

But: Increases power consumption dramatically

• Repeater capacitance : $C_{rep} = khC_{drv}$

Drivers other than repeaters also considered

- Wire capacitance : $C_{wire} = 2(C_g + C_c)$
- Energy is then = $N_{wire}(C_{rep} + C_{wire})$
 - Ignoring operation frequency and supply voltage which are not varying

Energy in 130nm, 90nm

- Total energy on a layer is fairly constant across metal levels
 - Large differences on layer 1 are due to top-down layer assignment, different utilization factors
- Larger pitches at top levels allows for smaller energy consumption (fewer repeaters) in Intel and ITRS
 - With growing # of repeaters in future technologies (Saxena, ISPD03), it becomes critical to choose wiring pitches (*reverse scale*) with energy/repeaters in mind

Sum and Avg. of BW/Energy

Intel/ITRS remain appealing in terms of BW/Energy

- Spread is now larger than in case of just BW
- Gap increases from 130 to 90nm

Conclusions

- Bandwidth and energy metrics for complete interconnect stacks identified
- Growing impact of repeaters on via blockage
- Normalized bandwidth metrics for comparison of bandwidth across layers
- Intel and ITRS tend to show better results in terms of normalized bandwidth
 - Wider pitches, question of routability (?)
- Energy-based metrics indicate that top-level pitch choice has a large impact on BW/Energy
 - As repeaters become common on intermediate metallization layers, more layers must consider reverse scaling
- A gradually tapered interconnect stack provides best performance but somewhat more manufacturing complexity

Thank you