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Interconnect-Power Definition
• Interconnect-Power is dynamic power consumption 

due to interconnect capacitance switching
– How much power is consumed by Interconnections ?
– Future generations trends ?
– How to reduce the interconnect power ?

0.13 µm cross-section, source - Intel
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Background

• Power is becoming a major design issue

• Scope: Dynamic power, the majority of 

power

• P =  SAFi•Ci •V2 •f

• This work focuses on the capacitance term
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Outline

• Research methodology
• Interconnect Power Analysis
• Power-Aware Router Experiment
• Interconnect Power Prediction
• Summary
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• Low-power, state-of-the-art µ-processor
• Dynamic switching power analysis
• Interconnect attributes:
Ø Length
Ø Capacitance
Ø Fan Out (FO)
Ø Hierarchy data
Ø Net type
Ø Activity factors (AF)
Ø Miscellaneous.

Case study
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Interconnect Length Model

• Total wire length
• Stitched across hierarchies
• Summed over repeaters

• Net model
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Activity Factors Generation

Power test vectors generation
(worst case for high power, unit stressing)

RTL full-chip simulation
(results in blocks primary inputs: Activity,Probability)

Monte-Carlo based block inputs generation
(based on the RTL statistics)

Transistor level simulation - per block
(Unit delay, tuning for glitches)

Per node activity factor
Source -”Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation”, ITJ 2003



14/2/2004 8

Outline

• Research methodology
• Interconnect Power Analysis
• Power-Aware Router Experiment
• Interconnect Power Prediction
• Summary
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Interconnect Length Distribution

Source: Shekhar Y. Borkar, CRL - Intel
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Total Dynamic Power

• Total Dynamic 
Power

• Global clock –
not included

• Local
nets = 66%

• Global
nets = 34%

Total Power vs. Net Length
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Total Dynamic Power Breakdown
Global clock included

Interconnect
51%

Gate
34%

Diffusion
15%
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Interconnect power
(Interconnect only)

Power Breakdown by Net Types

Total power
(Gate, Diffusion and Interconnect)

Global clock included

local clock
20%global clock

19%

local signals
27%

global 
signals

34%
global clock

13%

global 
signals

21%
local signals

37%

local clock
29%
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Interconnect Power Breakdown
• Interconnect consumes 50% of dynamic power

• Clock power ~40% (of Interconnect and total)

• 90% of power consumed by 10% of nets

• Interconnect design is NOT power-aware !

• Predictive model can project the interconnect power.
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Outline

• Research methodology
• Interconnect Power Analysis
• Power-Aware Router Experiment
• Interconnect Power Prediction
• Summary
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Experiment - Power-Aware Router

• Routing Experiment optimizing processor’s blocks 

§ Local nodes (clock and signals) consume 66% of dynamic power

§ 10% of nets consume 90% of power

§ Min. spanning trees can save over 20% Interconnect power

§ Routing with spacing can save up to 40% Interconnect power

Small block’s local clock network
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Power-Aware Router Flow
Power grid routing

Clock tree routing
With spacing

Global and Detailed Routing -
of the un-routed nets

(timing and congestion driven)

All nets
routed?

Power-aware Rip up
and re-route

No

Yes

Finish

Top n% power consuming
signal nets routing

Clock tree: 
high FO, long lines, very active

Rip-up: not high power nets

Avoiding congestion

Followed by downsizing
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Outline

• Research methodology
• Interconnect Power Analysis
• Power-Aware Router Experiment
• Interconnect Power Prediction
• Summary
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Interconnect length projection
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Interconnect Power Model

• Multiplication of the number of interconnects with power 
breakdowns gives:

Projected dynamic power vs. net length
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Outline

• Research methodology
• Interconnect Power Analysis
• Power-Aware Router Experiment
• Interconnect Power Prediction
• Summary
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Summary
• Interconnect is 50% of the dynamic power of processors, and 

getting worse.

? Interconnect power-aware design is recommended

• Clock consumes 40% of interconnect power.

? Clock interconnect spacing is suggested

• Interconnect power is sum of nearly all net lengths and types.

? Router level Interconnect power reduction addresses all

• Interconnect power has strong dependency on the hierarchy

? Per Hierarchy analysis and optimization algorithms



14/2/2004 25

Future Research

1. Interconnect Power characterization and prediction

2. Investigate Interconnect power reduction techniques:

§ Interconnect-Spacing for power

§ Interconnect Power-Aware physical design

§ Aspect Ratio optimization for power

§ Architectural communication reduction
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Questions ?
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BACKUP-Slides
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Processor Case Study

• Analysis subject: Processor, 0.13 [µm]

• 77 million transistors, die size of 88 [mm2] 

• Data sources (AF, Capacitance, Length)

• Excluded: L2 cache, global clock, analog units
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Global Communication

• Global power is 
important

• Global power is 
mostly IC

• For higher power 
benchmarks –
Global power is 
higher

• G-clock excluded
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Benchmark Selection

• High power test benchmarks
§ Worst case design
§ Suitable for: thermal design, power grid design
§ Average power is a fraction of peak power

• Unit stressing benchmarks
• Averaging of all high power benchmarks
§ High node coverage

ITC logo
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Interconnect Power Implications

• Interconnect power can be reduced by 
minimizing switched capacitance:

§ Fabrication process (wire parameters)
§ Power-driven physical design
§ Logic optimization for power
§ Architectural interconnect optimization
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Interconnect Capacitance

• Side-cap is increasing: 
70% to 80%

Global Capacitance breakdown
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The majority of interconnect capacitance is side-capacitance !
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Fabrication Process –
Aspect Ratio (AR)

• Interconnect AR =

• Low AR = Low Interconnect power
• Low AR = High resistance
• Frequency Modeling 
§ Local: average gate, average IC
§ Global: optimally buffered global IC
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Aspect Ratio optimization can save over 10% of dynamic power !

Aspect Ratio – Trade offs

• Power – depends on cap.
• Frequency:
§ Local – gates and IC cap.
§ Global – mostly IC – RC

• Per layer AR optimization !
• Scaling ? more power save, 

less frequency loss
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Physical Design - Spacing

• Spacing can save up to 40%

• About 30% is with double space

• Spacing advantages: scaling, 
frequency, reliability, noise,
easy to modify
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Spacing calculation
Back of an envelope estimation: 

§ 10% of Interconnect ? 90% power

§ X2 spacing = extra 20% wiring

§ Global clock – not spaced (inductance)

§ Global clock is 20% of interconnect power

§ Save: 30% of (90%-20%) = 20%

§ Interconnect is 50% ? 10% power save
Expected 20% with downsizing

§ Minor losses - congestion
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µ-Architecture - CMP

• Comparing two scaling 
methods, by IC power.

P
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P`

L2`

Uniprocessor

P”

L2`

P”

CMP• IC - predicted by Rent
• L2 - identical, minor
• Clock - Identical !

Gen. 1 Gen. 2

• Same average AF.
• Result ~5% less dynamic power for CMP
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Power critical
vs.

Timing critical
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Outline

• Research methodology
• Interconnect Power Analysis
• Future Trends Analysis
• Interconnect Power Implications
• Summary
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Interconnect Length Prediction

• Technology projections - ITRS
• Interconnect length predictions:
§ ITRS model: 1/3 of the routing space

- most optimistic
§ Davis model:

o Rent’s rule based
o Predicts number of nets as function of:

the number of gates and complexity factors 

• Models calibrated based on the case study

?

Time



14/2/2004 41

Rent’s parameters

N gates

Rent’s rule:  T = k N r

T =   # of I/O terminals (pins)
N =   # of gates
K =   avg. I/O’s per gate
r =   Rent’s exponent

can be: 0 < r < 1  , but common -
(simple) 0.5 < r < 0.75 (complex)

T terminals
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Donath’s length estimation model

For the i-th level:

There are blocks 4i

For each block there are: s  terminal
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Average interconnection length

Taken from a SLIP 2001 tutorial by Dirk Stroobandt

The wires can be of two types A and D. 
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Davis Model
• From Rent’s rule:
• IDF:

• Where:           , 

• Interconnect total number and length:
Nets: Length:

• Multipoint Length:
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Davis Model - extension

• Constant factor favors shorter nets.
• Short P2P net has higher chance to be a part 

of a multipoint net.
• Correction factor:
• Length:
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RMST - Example
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Local and Global IC

• Local and Global 
IC are different:

• Number by 
Length 
breakdown

• IC breakdown –
cap and power

• Fan out
• Metal usage
• AF is similar

0 %

20 %

40 %

60 %

80 %

100 %

4 . 16 8 . 32 16 . 64 32 . 864 65 . 728 131 . 456 262 . 496 523 . 744 1044 . 99 2084 . 99 4160 8300 . 45 16561 . 4 33930 83850

Length [um ]

P
o

w
er

 

IC

Diff

Gate

0 %

20 %

40 %

60 %

80 %

100 %

4 . 16 8 . 32 16 . 64 32 . 864 65 . 728 131 . 456 262 . 496 523 . 744 1044 . 99 2084 .99 4160 8300 . 45 16561 . 4 33930 83850

Length [um ]

P
o

w
er

 

IC

Diff

Gate

Local Power breakdown vs. Net Length

Global Power breakdown vs. Net Length



14/2/2004 49

Benchmarks Comparison
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Interconnect Peaks
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ITRS Power Trends

• The ITRS power projection interconnect power 
reduction that happens in 2006-2007 is based on:

1. Aggressive voltage reduction

2. Low-k dielectric improvements

• The devices capacitance increase by +30% (trend -15%)

• The combined effect:

• Interconnect power reduction (relative to voltage)

• Device power remains constant
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Dynamic power - ITRS trend
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Power-Aware Flow

• The reduced IC cap allows for 
driver downsizing

• On average it reduced the 
dynamic power by 1.4 of the IC 
power saving

• Downsizing is timing verified
• Cells downsizing reduced the 

total area and leakage by 0.4%
• No signal spacing was applied

over 30% unused metal
• Post-layout optimization are 

possible

RC Extraction

Timing Analysis,
Power Analysis

Timing driven -
driver upsizing

Power driven
Timing constrained
driver downsizing

Sizing
modified

?

No

Yes

Finish

Power-aware Routing

Placement

All slacks
positive

?

No

Yes
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FUBS – description

Block Name Block A Block B Block C Block D  Block E AVERAGE 

       

Area [µm2] 138801.6 101274.6 65816.1 164229.1 59766.3 209537.8 
Devices 14574 8644 7618 18194 6109 16675 
Inactive Nodes 63.66% 98.78% 82.36% 39.22% 35.38% 52.94% 
Power [uW] 17170.22 251.15 1786.76 11811.90 6757.11 15373.86 
RMST potential 
power saving 14.3% 17% 22% 29% 4.1% 17% 

Clock cap. 11.25% 2.59% 12.75% 13.16% 3.27% 8.01% 
Clock power 72.10% 99.99% 96.46% 94.99% 33.84% 60.47% 
IC cap. 34.00% 27.70% 38.14% 36.05% 29.86% 34.67% 
IC power 28.89% 59.54% 46.74% 48.62% 40.65% 36.83% 
Clock IC power 20.19% 59.54% 45.48% 46.26% 16.87% 23.87% 
Clock IC length 1.71% 2.34% 2.05% 2.09% 0.74% 3.85% 
Relative - 
Capacitance per 
Length Unit. 

82.23% 113.15% 87.46% 83.74% 85.97% 88.46% 

 

• A – medium, randomly picked
• B – small, highest clock power
• C – small, good potential
• D – medium, good potential
• E – worse than average
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Miller Factor - Power

• Opposite direction switching-

• The current:

• Energy:

• That is 4 times a single switching energy.
Decoupling by Miller factor of ‘2’.

• Same direction switching => no current.
Decoupling by Miller factor of ‘0’.

• Average case: Miller factor of ‘1’ suitable for power-
average case sum metric.
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Routing Model

• Via blockage:
• Router efficiency: 0.6
• Power grid: 20% of routing
• Clock grid: 10% of top tier

• More accurate than ITRS 2001.

( )
Low layer pitch

High layer pitchLayer multiplier = 1 - blocking fraction


