Interconnect-Power Dissipation in a Microprocessor

N. Magen, A. Kolodny, U. Weiser, N. Shamir

Intel corporation®

Technion - Israel Institute of Technology

Interconnect-Power Definition

- Interconnect-Power is dynamic power consumption due to interconnect capacitance switching
 - How much power is consumed by Interconnections ?
 - Future generations trends ?
 - How to reduce the interconnect power ?

 $0.13\,\mu m$ cross-section, source - Intel

Background

- Power is becoming a major design issue
- Scope: Dynamic power, the majority of power
- $\mathbf{P} = \mathbf{S}\mathbf{A}\mathbf{F}_{i} \cdot \mathbf{C}_{i} \cdot \mathbf{V}^{2} \cdot \mathbf{f}$
- This work focuses on the capacitance term

Outline

- Research methodology
- Interconnect Power Analysis
- Power-Aware Router Experiment
- Interconnect Power Prediction
- Summary

Case study

- Low-power, state-of-the-art μ-processor
- Dynamic switching power analysis
- Interconnect attributes:
 - ➢ Length
 - > Capacitance
 - > Fan Out (FO)
 - > Hierarchy data
 - > Net type
 - > Activity factors (AF)
 - > Miscellaneous.

Interconnect Length Model

- Total wire length
- Stitched across hierarchies
- Summed over repeaters

Activity Factors Generation

Source -"Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation", ITJ 2003

Outline

- Research methodology
- Interconnect Power Analysis
- Power-Aware Router Experiment
- Interconnect Power Prediction
- Summary

Interconnect Length Distribution

Source: Shekhar Y. Borkar, CRL - Intel

Interconnect Length Distribution

Nets vs. Net Length

Total Dynamic Power

Total Dynamic Power Breakdown

Global clock included

14/2/2004

Power Breakdown by Net Types Global clock included

Interconnect Power Breakdown

- Interconnect consumes 50% of dynamic power
- Clock power ~40% (of Interconnect and total)
- 90% of power consumed by 10% of nets
- Interconnect design is NOT power-aware !
- Predictive model can project the interconnect power.

Outline

- Research methodology
- Interconnect Power Analysis
- Power-Aware Router Experiment
- Interconnect Power Prediction
- Summary

Experiment - Power-Aware Router

- Routing Experiment optimizing processor's blocks
 - Local nodes (clock and signals) consume 66% of dynamic power
 - 10% of nets consume 90% of power
 - Min. spanning trees can save over 20% Interconnect power
 - Routing with spacing can save up to 40% Interconnect power

Small block's local clock network

1

1

Power-Aware Router Flow

Results - Power Saving

1 - Estimated based on clock interconnect power

Outline

- Research methodology
- Interconnect Power Analysis
- Power-Aware Router Experiment
- Interconnect Power Prediction
- Summary

Future of Interconnect Power

Interconnect power grows to 65%-80% within 5 years !

(using optimistic interconnect scaling)

Interconnect Power Prediction

• The number of nets vs. unit length – Modified Davis model

• The dynamic power average breakdown

Interconnect Power Model

• Multiplication of the number of interconnects with power breakdowns gives:

The power model matches processor power distribution !

Outline

- Research methodology
- Interconnect Power Analysis
- Power-Aware Router Experiment
- Interconnect Power Prediction
- Summary

Summary

- Interconnect is 50% of the dynamic power of processors, and getting worse.
 - ? Interconnect power-aware design is recommended
- Clock consumes 40% of interconnect power.
 - ? Clock interconnect spacing is suggested
- Interconnect power is sum of nearly all net lengths and types.
 - **?** Router level Interconnect power reduction addresses all
- Interconnect power has strong dependency on the hierarchy
 - ? Per Hierarchy analysis and optimization algorithms

Future Research

- **1. Interconnect Power characterization and prediction**
- 2. Investigate Interconnect power reduction techniques:
 - Interconnect-Spacing for power
 - Interconnect Power-Aware physical design
 - Aspect Ratio optimization for power
 - Architectural communication reduction

14/2/2004

Questions ?

BACKUP-Slides

- Analysis subject: Processor, 0.13 [µm]
- 77 million transistors, die size of 88 [mm²]
- Data sources (AF, Capacitance, Length)
- Excluded: L2 cache, global clock, analog units

Global Communication

- Global power is important
- Global power is mostly IC
- For higher power benchmarks – Global power is higher
- G-clock excluded

Benchmark Selection

- High power test benchmarks
 - Worst case design
 - Suitable for: thermal design, power grid design
 - Average power is a fraction of peak power
- Unit stressing benchmarks
- Averaging of all high power benchmarks
 - High node coverage

ITC logo

Interconnect Power Implications

- Interconnect power can be reduced by minimizing switched capacitance:
 - Fabrication process (wire parameters)
 - Power-driven physical design
 - Logic optimization for power
 - Architectural interconnect optimization

Interconnect Capacitance

The majority of interconnect capacitance is side-capacitance !

Fabrication Process – **Aspect Ratio** (AR)

- Low AR = Low Interconnect power
- Low AR = High resistance
- Frequency Modeling
 - Local: average gate, average IC
 - **Global:** optimally buffered global IC

Global ∞-//////////////

Ŗ,

Ç

Aspect Ratio – Trade offs

- Power depends on cap.
- Frequency:
 - Local gates and IC cap.
 - **Global** mostly IC RC
- Per layer AR optimization !
- Scaling? more power save, less frequency loss

Freq. And Power vs. Relative AR

Aspect Ratio optimization can save over 10% of dynamic power !

Physical Design - Spacing

Wire spacing can save up to 20% of the dynamic power !

Spacing calculation

Back of an envelope estimation:

- 10% of Interconnect ? 90% power
- X2 spacing = extra 20% wiring
- Global clock not spaced (inductance)
- Global clock is 20% of interconnect power
- Save: 30% of (90%-20%) = 20%
- Interconnect is 50%? 10% power save Expected 20% with downsizing
- Minor losses congestion

µ-Architecture - CMP

- Comparing two scaling methods, by IC power.
- IC predicted by Rent
- L2 identical, minor
- Clock Identical !
- Same average AF.
- Result ~5% less dynamic power for CMP

Power critical

vs. Timing critical

Outline

- Research methodology
- Interconnect Power Analysis
- Future Trends Analysis
- Interconnect Power Implications
- Summary

Interconnect Length Prediction

- Technology projections ITRS
- Interconnect length predictions:
 - ITRS model: 1/3 of the routing space
 most optimistic
 - Davis model:
 - o Rent's rule based
 - Predicts number of nets as function of: the number of gates and complexity factors
- Models calibrated based on the case study

Rent's parameters

Rent's rule: $T = k N^r$

- T = # of I/O terminals (pins)
- N = # of gates
- K = avg. I/O's per gate
- r = Rent's exponent can be: 0 < r < 1, but common -(simple) 0.5 < r < 0.75 (complex)

T terminals

Donath's length estimation model

For the i-th level:

There are 4^i blocks

For each block there are:
$$k \cdot \left(\frac{N}{4^i}\right)^r$$
 terminals
Assuming two terminal nets : $\frac{k}{2} \cdot \left(\frac{N}{4^i}\right)^r$ nets

The nets of the i-1 level must be substracted.

Nets for level i:
$$\mathbf{n} = 4^i \cdot \frac{k}{2} \cdot \left(\frac{N}{4^i}\right)^r - 4^{i-1} \cdot \frac{k}{2} \cdot \left(\frac{N}{4^{i-1}}\right)^r = 4^i \cdot \frac{k}{2} \cdot \left(\frac{N}{4^i}\right)^r \cdot \left(1 - 4^{r-1}\right)^r$$

Average interconnection length

The wires can be of two types A and D. $L_{A} = \frac{\sum_{i_{A}=1}^{I} \sum_{j_{A}=1}^{I} \sum_{j_{B}=1}^{I} \sum_{j_{B}=1}^{I} [I + i_{A} - i_{B} + |j_{B} - j_{A}|]}{I^{4}} = \frac{4}{3} \cdot I - \frac{1}{3I} \quad \text{Adjacent (A-)}$ Diagonal (D-) combination $L_{D} = \frac{\sum_{i_{A}=1}^{n} \sum_{j_{A}=1}^{n} \sum_{j_{B}=1}^{n} \sum_{j_{B}=1}^{n} [2I + i_{A} + j_{A} - i_{B} - j_{B}]}{I^{4}} = 2 \cdot I$ Taken from a SLIP 2001 tutorial by Dirk Stroobandt The average: $\mathbf{r} = \frac{14 \cdot \mathbf{I}}{9} - \frac{2}{9 \cdot \mathbf{I}}$ Overall: $\overline{R} = \frac{\sum_{i=1}^{I} n_i \cdot r_i}{\sum_{i=1}^{I} n_i}$ equals $\frac{2}{9} \cdot \left(7 \cdot \frac{N^{r-0.5} - 1}{4^{r-0.5} - 1} - \frac{1 - N^{r-1.5}}{1 - 4^{r-1.5}}\right) \cdot \left(\frac{1 - 4^{r-1}}{1 - N^{r-1}}\right)$

Davis Model

- From Rent's rule: $T_r = r \cdot N^P$
- IDF: $i(l) = \begin{cases} 1 \le l \le \sqrt{N} : \frac{\mathbf{a} \cdot r}{2} \cdot \Gamma \cdot \left(\frac{l^3}{3} - 2 \cdot \sqrt{N} \cdot l^2 + 2 \cdot N \cdot l\right) \cdot l^{2 \cdot p - 4} \\ \sqrt{N} \le l \le 2 \cdot \sqrt{N} : \frac{\mathbf{a} \cdot r}{6} \cdot \Gamma \cdot \left(2 \cdot \sqrt{N} \cdot l\right)^3 \cdot l^{2 \cdot p - 4} \\ 2 \cdot N \cdot \left(1 - N^{p - 1}\right) \\ \hline \left(\frac{-N^p \cdot \frac{1 + 2 \cdot p - 2^{2 \cdot p - 1}}{p \cdot (2 \cdot p - 1) \cdot (p - 1) \cdot (2 \cdot p - 3)} - \frac{1}{6 \cdot p} + \frac{2 \cdot \sqrt{N}}{2 \cdot p - 1} - \frac{N}{p - 1} \right) \end{cases}$
- Interconnect total number and length: Nets: $I_{total} = \int_{1}^{2\sqrt{N}} i(z) dz$ Length: $L_{total} = \int_{1}^{2\sqrt{N}} i(z) \cdot z \cdot dz$ • Multipoint Length: $L_{multi_terminal} = L_{total} \cdot c$ where $c = \frac{4}{FO+3}$

Davis Model - extension

- Constant factor favors shorter nets.
- Short P2P net has higher chance to be a part of a multipoint net.
- Correction factor: multi-terminal factor(l) = $\frac{\text{number of point to point nets shorter than } l}{\text{total point to point nets}}$
- Length: $I_{\text{multi-terminal}}(l) = \frac{1}{FO} g_1^l i(z) g_1 ulti-terminal factor(z) g_l z$

14/2/2004

RMST - Example

Total Dynamic Power

Local and Global IC

- Local and Global IC are different:
- Number by Length breakdown
- IC breakdown cap and power
- Fan out
- Metal usage
- AF is similar

High power tests show similar behavior to average SPEC !

14/2/2004

Interconnect Peaks

Total wire length vs. Length

ITRS Power Trends

- The ITRS power projection interconnect power reduction that happens in 2006-2007 is based on:
 - 1. Aggressive voltage reduction
 - 2. Low-k dielectric improvements
- The devices capacitance increase by +30% (trend -15%)
- The combined effect:
 - Interconnect power reduction (relative to voltage)
 - Device power remains constant

Dynamic power - ITRS trend

The Black curve is the ITRS maximum heat removal capabilities

Power-Aware Flow

- The reduced IC cap allows for driver downsizing
- On average it reduced the dynamic power by 1.4 of the IC power saving
- Downsizing is timing verified
- Cells downsizing reduced the total area and leakage by 0.4%
- No signal spacing was applied over 30% unused metal
- Post-layout optimization are possible

FUBS – description

- A medium, randomly picked
- **B** small, highest clock power
- C small, good potential
- D medium, good potential
- **E** worse than average

Block Name	Block A	Block B	Block C	Block D	Block E	AVERAGE
Area [µm²]	138801.6	101274.6	65816.1	164229.1	59766.3	209537.8
Devices	14574	8644	7618	18194	6109	16675
Inactive Nodes	63.66%	98.78%	82.36%	39.22%	35.38%	52.94%
Power [uW]	17170.22	251.15	1786.76	11811.90	6757.11	15373.86
RMST potential power saving	14.3%	17%	22%	29%	4.1%	17%
Clock cap.	11.25%	2.59%	12.75%	13.16%	3.27%	8.01%
Clock power	72.10%	99.99%	96.46%	94.99%	33.84%	60.47%
IC cap.	34.00%	27.70%	38.14%	36.05%	29.86%	34.67%
IC power	28.89%	59.54%	46.74%	48.62%	40.65%	36.83%
Clock IC power	20.19%	59.54%	45.48%	46.26%	16.87%	23.87%
Clock IC length	1.71%	2.34%	2.05%	2.09%	0.74%	3.85%
Relative - Capacitance per Length Unit.	82.23%	113.15%	87.46%	83.74%	85.97%	88.46%

Miller Factor - Power

- Opposite direction switching-
- The current: $I_c = \frac{dQ}{dt} = \frac{d(C\Delta V_c)}{dt} = C \frac{d\Delta V_c}{dt}$
- Energy: $E_c = \int_0^T I_c \cdot V_{dd} \cdot dt = \int_0^T C \cdot \frac{d\Delta V_c}{dt} \cdot V_{dd} \cdot dt = C \cdot V_{dd} \int_{-V_{dd}}^{V_{dd}} dv_c = 2 \cdot C \cdot V_{dd}^2$
- That is 4 times a single switching energy. Decoupling by Miller factor of '2'.
- Same direction switching => no current.
 Decoupling by Miller factor of '0'.
- Average case: Miller factor of '1' suitable for poweraverage case sum metric.

R1

Routing Model

- **Via blockage:** Layer multiplier = (1 blocking fraction)^{Low layer pitch/}High layer pitch
- Router efficiency: 0.6
- Power grid: 20% of routing
- Clock grid: 10% of top tier
- More accurate than ITRS 2001.