

Chao-Yang Yeh and Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering, University of California, Santa Barbara

- Placement of circuit elements has a major impact on wire length/delay
- Timing-driven placement
 - Path-based algorithm
 - Analyze path delay explicitly during placement
 - Net-based algorithm
 - Net weight

Net Delay Budgeting

Combinational budgeting

- Treat FFs like POs, PIs
- Optimize each block individually

Sequential Budgeting

- Solve the circuit as a whole by combining budgeting with retiming
- Solve the sequential budgeting formulation. (Obtain clock skew for each FF)
- Use skew-retiming equivalence relation to realize FF movement

Interconnect Prediction

- Predicted Statistically
- Predicted Analytical hierarchical average length estimation (Donth79')

New Ideas

- Using combinational budgeting as a delay prediction method (predict individual net length)
- Use prediction methods for sequential budgeting
 - Generate weight : Average length estimation
 - Delay prediction : combinational budgeting

- Combinational Delay budgeting:
 - Predict individual net length/delay

Mutual Contraction

- Mutual Contraction (A new prediction method)
 - Placer tends to place strongly connected nodes in close proximity.
 - Placer puts more optimization effort on smallerfanout nets
- Derive mutual contraction metrics estimate net length for a pair of nodes.

Mutual Contraction experiments (1)

Length distribution of 2-pin nets (in golden placement):

Mutual Contraction experiments (2)

Connection length prediction:

Weighting function

Average Interconnect Lengths

Predict average edge length for each partition level

$$L_k = \frac{4 \times \left(\frac{4\lambda}{3} - \frac{1}{3\lambda}\right) + 4\lambda}{6} , \ \lambda = 2^{H-k}$$

Assign weight for each net

Assign more budget for edges predicted long

$$\alpha_{ij} = \left(\frac{1 + e^{-i\phi_{JS}}}{2}\right)^{5/4} \times \left(2 - e^{-i\xi_{k}}\right)^{5}, e_{ij} \in net \ N, N \ is \ at \ level \ k$$
Average Interconnect length

Timing-aware Sequential Budgeting

Timing-aware Sequential Budgeting

Budgeting Optimization

Sequential Budgeting Constraints

> Clock Period Constraints

Move FFs using the skew-retiming equivalence relation

Sequential Budgeting constraints:

- Transform Path constraints to edge constraints
- Assign fan-in arrival time to each gate
- Add FFs into consideration

Clock period constraints:

- Budgeting doesn't violate timing
- Give larger budget for paths predicted long

Find the best budgeting that meet timing requirement

Including interconnect prediction

Timing-aware Sequential Budgeting

 Less dependent on previous placement

Budgeting Optimization

Sequential Budgeting Constraints

> Clock Period Constraints

Use interconnect prediction to generate weighting for each net

 Net predicted to be longer => increase its budget

Move FFs according to skews

 Using combinational budgeting to predict interconnect delay

Interconnect prediction with sequential budgeting

Modified VPR Placer

- VPR a simulated-annealing based FPGA placer
- VPR-FF Decouple FFs and TLBs in placement.

- VPR-BGT Budgeting-aware Placer
 - Penalize edges whose delay are larger than their budgets

Experimental Results

Circuit	VPR-FF	New Placement Flow	Uniform Weighting	Retiming with VPR-FF
	P (ns)	P (ns)	P (ns)	P (ns)
bigkey	7.75	5.68	5.60	7.54
elliptic	16.57	15.58	15.42	16.58
s298	19.88	19.93 20.08		20.6
s38417	12.70	11.28	11.39	12.70
diffeq	13.29	12.68	12.57	13.03
tseng	12.15	11.41	12.67	11.77
dsip	8.47	5.62	5.20	7.09
clma	24.96	22.38	24.67	24.95
	1	87.71%	89.39%	97.44%

- Using delay budgeting to predict interconnect delay
- Incorporate interconnect prediction in sequential budgeting
- Apply in FPGA placement flow

Retiming (extend the solution space for budgeting)

Retiming: min-area, max-speed

- Skew-retiming equivalence
 - Use clock skew assignment to move FFs
 - Positive skew => FF move backward.
 - Negative skew => FF move forward.

Sequential Delay Budgeting with application to FPGAs

Chao-Yang Yeh
Malgorzata Marek-Sadowska

Motivation

- Placement of circuit elements has a major impact on wire length/delay
- Timing-driven placement
 - Path-based algorithm
 - Analyze path delay explicitly during placement
 - Net-based algorithm
 - Net weight

- Net Delay budgeting:
 - Done for combinational blocks
 - Spread appropriate delay budget along the path

- New Idea (Sequential budgeting):
 - Extend budgeting to handle sequential circuit better by incorporating

Delay Budgeting

Previous work:

- Combinational budgeting
- Treat FFs like POs, PIs

combining budgeting with retiming Combinational FF block Include clock period constraints

New idea: Sequential Budgeting

Solve the circuit as a whole by

Retiming (extend the solution space for budgeting)

Retiming:

- 2 main optimization goals in retiming
- Min-area retiming:
 - The cost function is the total # of FFs.
- Min-period retiming:
 - Skew-based retiming:
 - Based on the analogy between clock skew and re-positioning FFs
 - to minimize clock period.
 - relation to realize skews.

- Realize skews, after clock skew optimization
 - Positive skew => move backward
 - Negative skew => move forward

Combinational Budgeting formulation

Combinational Budgeting formulation (cont)

Convex Delay Budgeting Problem (CDB):

maximize: $\frac{\sum C_{i}[budget(i,j)]}{\sum_{v_{i}\in \mathbb{Z}}C_{i}[budget(i,j)]}$ subject to: $\frac{(x_{j}-x_{i}-D_{i})}{(x_{j}-x_{i}-D_{i})}$

$$(D_i + D_{ij})$$

$$x_i$$

$$x_j$$

$$x_i + (D_i + D_{ij}) \le x_j \quad \forall e_{ij} \in E$$

$$x_k \le P, \forall k \in PO; x_k = 0, \forall k \in PI$$

NOTE: Doesn't consider FFs

Skew-based retiming

Skew-based retiming

Skew-based Clock optimization

Skews

Move FFs Using skew-retiming relation

Moving FFs according to skews (multi-fanout)

After FF movement, assign skew to 0.

Timing-aware Sequential Budgeting

Timing-aware Sequential Budgeting

Budgeting Optimization

Sequential Budgeting Constraints

> Clock Period Constraints

Move FFs using the skew-retiming relation

Sequential Budgeting constraints:

- Transform Path constraints to edge constraints
- Assign fan-in arrival time to each gate
- Add FFs into consideration

Clock period constraints:

- Budgeting doesn't violate timing
- Give larger budget for paths predicted long

Find the best budgeting that meet timing requirement

Adding FFs in Combinational budgeting formulation

- Consider 2 cases for edge (i,j):
 - i is a FF fan-in arrival time (x_i – P)
 - i is not a FF fan-in arrival time (x_i)

Sequential Circuit Convex Delay Budgeting Problem (S-CDB):

minimize:

$$\sum_{e_{ij} \in E} C_{ij} [budget(i,j)]$$

subject to:

$$(D_i + L_g)$$

$$(x_i - P) \qquad x_j$$

$$(D_i + L_g)$$

$$(x_i - P) + (D_i + L_{ij}) \le x_j$$
 $\forall e_{ij} \in E, i \in FF$

$$x_i + (D_i + L_{ij}) \le x_j$$
 $\forall e_{ij} \in E, i \notin FF$

$$x_k \le P, \forall k \in PO, x_k = 0, \forall k \in PI$$

- Make sure Budgeting doesn't violate timing
- Give larger budget for paths predicted long

Constraints:

Timing-aware sequential budgeting formulation

T-SBGT:

minimize:

$$\sum_{e_{ij} \in E} C_{ij} [budget(i,j)] \qquad \sum_{e_{ij} \in E} D_{ij} \cdot budget(i,j)$$

subject to:

Clock period constraints

$$(x, -P) + (D_i + \max(P_i)) \le x_i$$
$$x + (D_i + \max(P_i)) \le x_i$$

$$\forall P_{ij} \in PS, i \in FF$$

$$x_i + (D_i + \max(P_{ij})) \le x_j$$

$$\forall P_{ij} \in PS, i \notin FF$$

Budgeting constraints

$$(x_i - P) + (D_i + L_{ij}) \le x_j$$

 $x_j + (D_j + L_{ij}) \le x_j$

$$\forall e_{ij} \in E, i \in FF$$

$$\forall e_{ij} \in E, i \notin FF$$

$$L\max(P_{ij}) \leq \max(P_{ij})$$

$$\forall P_{ij} \in PS$$

$$\begin{array}{c|c}
 & a & b \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 $(D_i + \max(P_{ij}))$

$$x_k \le P, \forall k \in PO, x_k = 0, \forall k \in PI$$

Application in FPGA placement

Modified VPR Placer

- VPR a simulated-annealing based FPGA placer
- VPR-FF Decouple FFs and TLBs in placement.

- VPR-BGT Budgeting-aware Placer
 - Penalize edges whose delay are larger than their budgets

$$B\cos t_{ij} = \begin{cases} 1000 \times (D_{ij} - B_{ij})^{1.5} & if(D_{ij} > B_{ij}) \\ 0.003 \times (D_{ij} - B_{ij}) & else \end{cases}$$

Application in FPGA placement

Post-layout FF reduction (reduce WL, power)

- Create an edge (i,j):
 - i and j are fan-outs of the same gate
 - The movable region of i and j intersect
- A Clique:
 - A group of nodes, every pair of them are connected by an edge.
- Maximum clique:
 - The clique with most nodes.

Iteration I:

Iteration II:

Find the max-clique until no edge in the graph

Experimental Results

Percentage of nets violate budgeting

aft	FFs ter ning		ock riod	Bud viola	lget ition	FF reduction (%)
New	Orig	New	Orig	New	Orig	New / Orig
1	2.8	1	1.08	1	1.14	19

Including interconnect prediction

Timing-aware Sequential Budgeting

 Less dependent on previous placement

Budgeting Optimization

Sequential Budgeting Constraints

> Clock Period Constraints

Use interconnect prediction to generate weighting for each net

 Net predicted to be longer => increase its budget

Move FFs according to skews

Using combinational budgeting to predict interconnect delay

Interconnect prediction with sequential budgeting

Mutual contraction & Average Interconnect Lengths

Mutual Contraction

 Look at the neighborhood of a net and predict if this net will be long or short

Average Interconnect Lengths

Predict average edge length for each partition level

$$L_k = \frac{4\left(\frac{4\lambda}{3} - \frac{1}{3\lambda}\right) + 4\lambda}{6} \ , \ \lambda = 2^{H-k}$$

Weighting for each net

Assign weight for each net

$$\alpha_{ij} = \left(\frac{1 + e^{-\frac{i\pi}{N}}}{2}\right)^{5/4} \times \left(2 - e^{-\frac{i\pi}{N}}\right)^{5}, e_{ij} \in net\ N, N\ is\ at\ level\ k$$
Average Interconnect length

Mutual Contraction

Budgeting cost function

$$\sum_{e_{ij} \in E} \alpha_{ij} \cdot \log [budget(i, j)]$$

Experimental Results

Circuit	VPR-FF	New Placement Flow	Uniform Weighting	Retiming with VPR-FF
	P (ns)	P (ns)	P(ns)	P (ns)
bigkey	7.75	5.68	5.60	7.54
elliptic 16.57		15.58	15.42	16.58
s298 19.88		19.93	20.08	20.6
s38417	12.70	11.28	11.39	12.70
diffeq	13.29	12.68	12.57	13.03
tseng	12.15	11.41	12.67	11.77
dsip	8.47	5.62	5.20	7.09
clma	24.96	22.38	24.67	24.95
	1	90.3%	92.9%	98%

- Derive the sequential budgeting algorithm that optimizes delay budgeting
- Apply it in FPGA placement
- Incorporate interconnect prediction in sequential budgeting

Bkup slides

Skew-based Retiming: clock optimization

Skew-based Clock Optimization formulation (SCO):

Minimize:

Subject to:

Short path constraint

$$s_i + (D_i + \min(P_{ij})) - T_{hold} \ge s_j \quad \forall P_{ij} \in PS$$

Long path constraint

$$(PI,FF)$$

$$(PO,FF)$$

$$(D_i + \max(P_{ij}))$$

$$S_i + (D_i + \max(P_{ij})) + T_{satup} \le S_j + P \quad \forall P_{ij} \in PS$$

$$s_k = 0, \forall k \in PO, PI$$

Skew-based retiming

Skew-based retiming

Skew-based Clock optimization

> Clock Optimization Constraints

Move FFs according to skews

- Short path constraint
 - Prevent double clocking
- Long path constraint
 - Prevent violate timing

Move FFs according to skews

Skew-retiming equivalence

