Supported by MARCO GSRC

Accurate Pseudo-Constructive Wirelength and Congestion Estimation

Andrew B. Kahng, UCSD CSE and ECE Depts., La Jolla Xu Xu, UCSD CSE Dept., La Jolla

Wirelength and Congestion Estimation
 Previous Work and Our Contribution
 New Wire Density Model
 Estimation of Detoured Nets
 Experimental Confirmation
 Conclusions and Future Work

Wirelength and Congestion Estimation

Wirelength and Congestion Estimation Problem Given: A placed VLSI standard-cell design Estimate: Total wirelength and congestion

Wire density $D^{t}(x,y)$

= probability that line segment $\overline{x, y} \in BB(t)$ will be used in the routed path for this connection

BB(t) = Bounding box of net t

Wirelength and Congestion Estimation
 → Previous Work and Our Contribution
 New Wire Density Model
 Estimation of Detoured Nets
 Experimental Confirmation
 Conclusion and Future Work

Previous Works and Our Contribution

 Lou et al. (ISPD-2001) assume that every path has the same probability of occurrence

We assume that paths with smaller number of bends have larger probability of occurrence

Previous Works and Our Contribution

- Previous probabilistic methods ignore detouring
- WL Estimation = Estimation of RSMT WL

We take detouring into account so that the predicted congestion map can better fit actual routing results

Previous Works and Our Contribution

Previous congestion map constructions are "one-shot"

Routing probability distributions are the same

We give an *iterative* congestion map construction by considering the interaction between nets

Wirelength and Congestion Estimation
Previous Work and Our Contribution
→ New Wire Density Model
Estimate Detoured Nets
Experimental Confirmation
Conclusion and Future Work

Bend Distribution

Goal: More practical model for congestion estimation

Not all paths have same probability of occurrence
 Our model assumes that only paths with the same number of bends have the same probability of occurrence

Empirical data: Bend distribution is log-normal

$$p_b = -0.05 + \frac{1.33}{\sqrt{2\pi\eta b}} e^{-\frac{\ln^2\left(\frac{b}{2.2}\right)}{2\eta^2}}$$

p_b = Probability of b-bend paths
= 0.6

New Wire Density Model

- Fit to observed statistics of routing paths in real layouts
- $\overline{x,y}$ = unit-length segment with left endpoint at (x,y) in the bounding box of net t

New Wire Density Model

w = Multi-bend factor

Blockage Effect Model

Every path must pass exactly one of line segments in S.

 $D^{t}(x,y) = \sum_{\substack{x',y' \in S \\ x',y' \in S}} P(\overline{x,y} \text{ routed} | \overline{x',y'} \text{ routed}) \bullet P(\overline{x',y'} \text{ routed})$ $P(\overline{x,y} \text{ routed} | \overline{x',y'} \text{ routed}) = D^{t'}(x,y)$ $P(\overline{x',y'} \text{ routed}) = \frac{D^{o}(x',y')}{\sum_{\substack{x',y' \in S \\ x',y' \in S}} D^{o}(x',y')}$

Testing the New Model

Wirelength and Congestion Estimation
Previous Work and Our Contribution
New Wire Density Model
→ Estimation of Detoured Nets
Experimental Confirmation
Conclusion and Future Work

Two Questions to Answer

- Which nets will detour?
- How to predict detoured wirelength?

Relationship Between Congestion and Detouring

Detoured nets are around congested regions

Only detoured nets are counted

Congestion_Factor

 $Congestion_Factor(t) = \frac{1}{F(t)} \sum_{(x,y) \in BB(t)} \{ (C(x,y) - D^t(x,y)) \bullet D^t(x,y) \}$

F(t) = Half-perimeter of BB(t) C(x, y) = Congestion of $\overline{x}, \overline{y}$

- Well correlated with whether a net will detour
- Hard to estimate the detoured WL, since it also depends on (nets in) the region outside BB(t)

Detour length	# of nets	Avg. Congestion Factor
0	27627	0.36195
[0, 10]	2575	0.930869
[10, 20]	52	1.95588
[20, 30]	22	1.29852
[30, 40]	11	0.780612
[40, 50]	14	1.13645
[50, 60]	4	1.17296
[60, 300]	19	1.65263

Iterative Estimation Method

If Congestion_Factor(t) > a

→ Expand the net bounding box in the least congested direction in order to reduce Congestion_Factor(t)
 → Recalculate wire density function and Congestion_Factor(t) for detoured nets
 Keep expanding until Congestion_Factor(t) < a for all nets

Need a model for detoured nets

Detoured Nets Model

 Main idea: mapping the detoured paths in an n x m grid to paths without detouring in an expanded (n+2l) x m grid.

 $(x, y) \rightarrow (x, y)$ if $y < y_0$ $\rightarrow (n+2l-x, y)$ otherwise l = Detoured wirelength

Detoured Nets Model

p_{d,b}= Probability of b-bend <u>detoured</u> paths

Congestion_Factor Based Algorithm

Input : Placed netlist with fixed pin location *Output :* Total wirelength and congestion map

For each net in the layout
For each line segment
calculate wire density and update its congestion
For each net t in the layout
calculate Congestion_Factor(t)
While (the maximum of Congestion_Factor > a)
expand BB(t) by 1 unit in the least congested direction
and recalculate the Congestion_Factor(t)

Wirelength and Congestion Estimation
Previous Work and Our Contribution
New Wire Density Model
Estimation of Detoured Nets
→ Experimental Confirmation
Conclusion and Future Work

Experimental Setup

- Five industry designs obtained as LEF/DEF files
- Divide the layout into 40000 equal regions
- Output includes total wirelength and congestion
- Output results are compared with actual routing results of a commercial detailed router, Cadence WarpRoute

Comparison of Total Wirelength

Test	RSMT_WL	Actual_WL	Congestion_Factor Based			
case			Est. WL	improve	CPU	
А	4.249	4.389	4.381	94%	15.69	
В	3.214	3.317	3.307	78%	7.64	
С	5.345	5.507	5.517	97%	3.37	
D	2.190	2.372	2.368	93%	23.51	
E	6.673	6.821	6.808	89%	7.91	

 $improve = \frac{|RSMT_WL - Actual_WL| - |Est_WL - Actual_WL|}{|RSMT_WL - Actual_WL|}$

Comparison of Congestion Maps

Estimated

Actual

Comparison of Estimation Quality

Testc	ase	А	В	С	D	Е	
Lou's	μ	0.903	0.878	0.911	0.923	1.235	
Model	σ.	1.227	1.352	1.124	0.946	1.672	
	CPU	15.24	7.56	4.67	22.65	8.13	
New	μ	0.951	1.037	0.962	0.981	1.102	
Model	σ.	1.134	0.621	0.721	0.545	1.024	
	CPU	6.89	3.12	1.36	9.27	3.28	
New	μ	0.963	1.031	0.991	0.987	1.057	
Model	σ	0.689	0.566	0.707	0.323	0.813	
+CF	CPU	15.69	7.64	3.37	23.51	7.91	
$ \sum_{i=1}^{40000} \left(\frac{\sum\limits_{\overline{x,\overline{y}}\in r_i} C(x,y)}{\sum\limits_{\overline{x,\overline{y}}\in r_i} \delta(x,y)} \right) \qquad $							
$\mu \equiv 40000$ $\sigma \equiv \sqrt{40000-1}$							

Ideal values: μ =1 and σ =0 Metrics proposed in Kannan et al. DAC-2002

Wirelength and Congestion Estimation
Previous Work and Our Contribution
New Wire Density Model
Estimation of Detoured Nets
Experimental Confirmation
→ Conclusion and Future Work

Conclusions / Future Work

- New, accurate wirelength and congestion estimation methods
- Improve the wirelength estimation accuracy by 90% on average with respect to the traditional RSMT wirelength estimate
- More accurate congestion maps than current estimation methods

Include new estimator into a placer