Placement Rent Exponent Calculation Methods, Temporal Behaviour, and FPGA Architecture Evaluation

Joachim Pistorius and Mike Hutton

Some Questions

- How best to calculate placement Rent?
- Are there biases in calculation methods?
- How does Rent exponent change with timing-driven placement?
- Do circuit "types" have a common Rent characteristic?
- How does Rent exponent change with placement quality?

Goals of this paper

Purely empirical study.

- Many benchmarks, different sizes.
- Commercial FPGA architecture.
- Looking for interesting trends in the data.
- Try to address the preceding questions.
- Look at FPGA architecture wiring requirements and Rent's Rule.

Applying Rent's Rule: P = **kB**^r

One circuit:

- Estimate wirelength, pre-placement.
- Extract r, follow models for wirelength.
- Many circuits:
 - Estimate wirelength required for an FPGA architecture.
 - Extract a "typical r".
 - Did we provide enough interconnect at each level of "hierarchy"?

Motivation: Apex Rent Exponents

Questioning the methodology:

© 2003 MH 7/28

Calculating Rent Parameters

- Partitioning Rent:
 - Matches the APEX CAD flow and architecture
- Placement Rent
 - More relevant to a placed circuit.
 - Feuer: for a good placement, a "sample" of the placement should behave as Rent.
- But what is a "sample"?
 - Hypothesize that the definition of the sample will affect both the results and spirit of the analysis.

© 2003 MH 9/28

© 2003 MH 10/28

III. Random x-y + lengths

© 2003 MH 11/28

© 2003 MH 12/28

"Region" Size

Is it "fair" that smaller **samples** contribute much more heavily to the Rent parameter?

© 2003 MH 13/28

Sampling Frequency

RND_xy_len

240%

RND xv xv

Is it "fair" that some **cells** of the placement contribute much more heavily to the Rent parameter?

Rent exponents differ with method

RND_xy_rad vs. PART

© 2003 MH 15/28

ADERA.

Significantly...

Comparison of final Rent exponent

Preconceived biases

Placement cost function is:

- Minimum wire usage
- Best worst-case path delay
- Placer is simulated annealing based

A priori belief that RND_xy_rad should be a more accurate reflection of the placement quality / architecture stress.

Conclusions on sampling methods

- The straightforward way of measuring does not "seem" fair.
- Other methods seem more natural.
 - If you believe in applying Rent to a non-partitioning situation.
- Significant variation in measured r based on the method used.
- Question: what does this mean?
 Unfortunately, no answer for this.

Design Characterization.

Parameter r varies with the "structure and type of circuit"?

Rent Parameter by Design Type

© 2003 MH 19/28

Timing-driven placement

Pushes out both Rent (r), wirelength (w).

If you measure r,w with a partitioner, but apply it to a timing-driven placer, results will differ.

© 2003 MH 20/28

Complicating observation.

Both r and w move, but not necessarily together.

Rent exponent, average WL - TDC on vs. off

© 2003 MH 21/28

Temporal correlation

For a given circuit, decrease in r over the course of placement correlates strongly with placement quality / wirelength!

Conclusions on time and wirelength.

I don't see a correlation between circuit type and r. It looks to be more complicated.

- TDC affects both r and w.
 - But not in lock-step.

If* you start with normalized r and w, the two are surprisingly correlated as the placement quality improves.

 Does this apply outside of the simulated annealing world?

Predicting wirelength

- Simple goal: how well does a naïve model work for FPGAs?
- Answer: random scatter, until we adjust the model for the architecture, then "reasonable"

© 2003 MH 24/28

Rent and Cyclone

- Rent used only as a guiding principle in designing Cyclone – almost entirely empirical.
- Rent exponent of the device is .72, while the average in the design set is .55.

Cyclone vs. "Typical" Design

© 2003 MH 25/28

Easy and hard designs

- The Rent exponent of the architecture is safely above the most stressed design.
 - Almost exactly \overline{r} + 2 σ
- Note worst-case vs. average case. We do not consider Cyclone to be over-routed.

© 2003 MH 26/28

Segmented Rent Plot

Rent parameter of cyclone is NOT 0.72.

- LABs have input 26, output 10, size 10.
- 80 global tracks in H and V direction.

Conclusions

- Empirical study.
- Importance of Rent methodology
 - Biases and effect on r,w.
- Measurement and correlation to FPGA architectures.
 - Naïve adjustment of Feuer works "OK"
 - Interesting Rent properties on Cyclone.
- Rent exponent and placement quality/time.
 - Stronger than expected correlation.

