Error-Correction & Crosstalk Avoidance in DSM Busses

Ketan Patel and Igor Markov

University of Michigan Electrical Engineering & Computer Science

Outline

- Motivation
- Previous work
- Graph-based model & optimal codes
- Boundary shift codes
- Future work

Motivation

DSM busses increasingly susceptible to noise

- Crosstalk
- Radiation effects
- Power grid fluctuations

Goal: Avoid crosstalk & provide error-correction

Crosstalk Noise

Most detrimental switching pattern

e.g. Bus value (t=0) \Rightarrow 0110100 Bus value (t=1) \Rightarrow 11011011

We call this an invalid transition

Memory vs. Memoryless

Memoryless codes

- Encoding determined only by current bits
- Fixed codebook

Codes with memory

- Encoding may depend on previous codewords
- Dynamic codebook

Codes with Memory

Two graphs:

 $G_1 \leftrightarrow crosstalk constraints$

 $G_2 \leftrightarrow$ error-correction constraints

For rate log₂M code

 Vertices connected to ≥ M vertices in G₁ forming clique in G₂

Can find optimal code using pruning algorithm

Optimal Codes

Drawbacks

- Algorithm becomes infeasible for large busses
- No practical encoder/decoder

Need codes that have:

- Scalable design
- Practical encoder/decoder

Boundary Shift Codes

Distance properties of original code preserved

General Construction

- Start with error-correcting code
- Duplicate all bits (no odd dependent boundaries)
- Possibly "puncture" last bit position
- →Code 1
- 1-bit circular right-shift \rightarrow Code 2

Code 1 has no odd dependent boundaries Code 2 has no even dependent boundaries

Single Error-Correcting Code

Use parity check code

e.g. [5,4,2] parity check code

Duplicate bits and puncture

 $\mathbf{X}_1 \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_3 \mathbf{X}_4 \mathbf{X}_4 \mathbf{X}_5 \bigstar_5$

This is [9,4,3] single error-correcting code

Boundary Shift Code (Example)

<u>Time</u>	Input	Encoded Output
0	1010	110011000
1	0111	000111111
2	1000	11000001
<u>Time</u>	Received	
1	110111111	1-bit left-shift
	101111111	
		Decode by
	10 0	majority vote
	0	

Code Rates						
	Wires	Optimal Memoryless	Optimal	Boundary Shift Code		
	3	1	1	1		
	4	1	1			
	5	1.59	2	2		
	6	2.32	2.32			
	7	2.58	3.17	3		
	8	3.17	3.59			
	9	3.81	4.25	4		

Single-error correcting self-shielding codes

Advantages/Drawbacks

Advantages

- Error-correction & crosstalk prevention
- Scalable construction
- Systematic (unencoded wires)

Drawbacks

- Encoding/decoding logic overhead
- Wire overhead
- Errors may cause invalid transitions

