
ErrorError--Correction & Correction & CrosstalkCrosstalk
Avoidance in DSM BussesAvoidance in DSM Busses

Ketan Patel and Igor Markov

University of Michigan
Electrical Engineering & Computer Science

OutlineOutline

• Motivation

• Previous work

• Graph-based model & optimal codes

• Boundary shift codes

• Future work

MotivationMotivation

DSM busses increasingly susceptible to noise

• Crosstalk

• Radiation effects

• Power grid fluctuations

Goal: Avoid crosstalk & provide error-correction

Crosstalk Crosstalk NoiseNoise

Most detrimental switching pattern

e.g.

Bus value (t=0) ⇒ 0 1 1 0 1 0 0 0
Bus value (t=1) ⇒ 1 1 0 1 1 0 1 1

We call this an invalid transition

0

0

1

1

Bus EncodingBus Encoding

• k bits encoded on n wires

k = Rate

• Encoding disallows invalid transitions

self-shielding code

k

Encoder

n

Bus

n

Decoder
k

Memory vs. Memory vs. Memoryless Memoryless

Memoryless codes

• Encoding determined only by current bits
• Fixed codebook

Codes with memory

• Encoding may depend on previous codewords
• Dynamic codebook

101

001100

010

000

011110

111

3-bit bus example

GraphGraph--based Model (based Model (MemorylessMemoryless))

Vertices: Bus Values
Edges: Valid Transitions

optimal
memoryless

code

Max
Clique

000

011110

111

010

00 000
01 011
10 110
11 010
-- 111

ErrorError--CorrectionCorrection

e.g., to correct 1 error ⇔ distance ≥ 3

Place edges if

• Valid transition c1⇔c2 is valid

• Distance large enough d(c1,c2) ≥ d

 −

2

1d
Can correct

errors

distance ≥ d

Codes with MemoryCodes with Memory

Two graphs:

G1 crosstalk constraints

G2 error-correction constraints

For rate log2M code

• Vertices connected to ≥ M vertices in G1

forming clique in G2

Can find optimal code using pruning algorithm

Optimal CodesOptimal Codes

Drawbacks

• Algorithm becomes infeasible for large busses

• No practical encoder/decoder

Need codes that have:

• Scalable design
• Practical encoder/decoder

Dependent BoundariesDependent Boundaries

Dependent boundary: boundary with transition

0 1 1 0 1 0 0 00 1 1 0 1 0 0 0

Positions {1, 3, 4, 5}

No overlapping
dependent boundaries

No invalid
transition

e.g.,

c1 0 1 1 0 0 1 1 1 {1, 3, 5}

c2 1 1 0 0 1 1 1 0 {2, 4, 7}

Boundary Shift CodesBoundary Shift Codes

Code with no
odd dependent

boundaries

Code with no
even dependent

boundaries

1-bit circular
right-shift

Alternating between codes
gives self-shielding code

Distance properties of original code preserved

General ConstructionGeneral Construction

• Start with error-correcting code
• Duplicate all bits (no odd dependent boundaries)
• Possibly “puncture” last bit position

• Code 1
• 1-bit circular right-shift Code 2

Code 1 has no odd dependent boundaries

Code 2 has no even dependent boundaries

Single ErrorSingle Error--Correcting CodeCorrecting Code

Use parity check code

e.g. [5,4,2] parity check code

x1 x2 x3 x4 (x1⊕ x2⊕ x3⊕ x4)

x1 x2 x3 x4 x5

Duplicate bits and puncture

x1 x1 x2 x2 x3 x3 x4 x4 x5 x5

This is [9,4,3] single error-correcting code

Boundary Shift Code (Example)Boundary Shift Code (Example)

Time Input
0 1010
1 0111
2 1000

Encoded Output
1 0 1 0 1 0 1 00
0 1 1 1 0011111110 1 1 1 1100111111
1 0 0 0 1 0 0 01

Time Received
1 110111111

101111111
1-bit left-shift

Decode by
majority vote

⊕
10 0

0

Code RatesCode Rates

44.253.819

—3.593.178

33.172.587

—2.322.326

221.595

—114

1113

Boundary

Shift Code
Optimal

Optimal

Memoryless
Wires

Single-error correcting self-shielding codes

Advantages/DrawbacksAdvantages/Drawbacks

Advantages
• Error-correction & crosstalk prevention

• Scalable construction
• Systematic (unencoded wires)

Drawbacks
• Encoding/decoding logic overhead
• Wire overhead

• Errors may cause invalid transitions

Future WorkFuture Work

• Generalize for more accurate fault models

• Evaluate using realistic simulations

• Generalize to include other constraint (e.g. power)

