Estimation of Wirelength Reduction for λ-Geometry vs. Manhattan Placement and Routing

H. Chen, C.-K. Cheng, A.B. Kahng, I. Mandoiu, and Q. Wang UCSD CSE Department

Work partially supported by Cadence Design Systems, Inc., California MICRO program, MARCO GSRC, NSF MIP-9987678, and the Semiconductor Research Corporation

Outline

- Introduction
- λ-Geometry Routing on Manhattan Placements
- λ-Geometry Placement and Routing
- Conclusion

Outline

- Introduction
 - Motivation
 - Previous estimation methods
 - Summary of previous results
- λ-Geometry Routing on Manhattan Placements
- λ-Geometry Placement and Routing
- Conclusion

Motivation

- Prevalent interconnect architecture = Manhattan routing
 - 2 orthogonal routing directions
 - Significant added WL beyond Euclidean optimum (up to 30% longer connections)
- Non-Manhattan routing
 - Requires non-trivial changes to design tools
- Are the WL savings worth the trouble?
 - Problem: Estimate WL reduction when switching from Manhattan to Non-Manhattan routing

λ-Geometry Routing

- Introduced by [Burman et al. 1991]
 - λ uniformly distributed routing directions
 - Approximates Euclidean routing as λ approaches infinity

Previous Estimates (I)

LSI patent [Scepanovic et al. 1996]

- Analysis of average WL improvement with hexagonal and octilinear routing for randomly distributed 2-pin nets
- 2-pin net model: one pin at the center, second pin uniformly distributed on unit Euclidean circle

- 13.4% improvement with hexagonal routing
- → 17.2% improvement with octilinear routing

Previous Estimates (II)

• [Chen et al. 2003]

- Analysis of average WL with λ-geometry routing for randomly distributed 2-pin nets
- → ratio of expected WL in λ -geometry to expected Euclidean length:

 $\frac{2\lambda(1-\cos(\pi/\lambda))}{\pi\sin(\pi/\lambda)}$

average WL overhead over Euclidean

λ = 2	$\lambda = 3$	$\lambda = 4$
27.3%	10.3%	5.5%

Previous Estimates (III)

• [Nielsen et al. 2002]

- Real VLSI chip (Manhattan-driven placement)
- 180,129 nets ranging in size from 2 to 86 pins (99.5% of the nets with 20 or fewer pins)
- Compute for each net λ-geometry Steiner minimum tree (SMT) using GeoSteiner 4.0

 \rightarrow WL reduction of λ -geometry SMT vs. rectilinear SMT:

Previous Estimates (IV)

• [Teig 2002]

- Notes that placement is not random, but driven by Steiner tree length minimization in the prevailing geometry
- Manhattan WL-driven placed 2-pin net model: one pin at center, second pin uniformly distributed on rectilinear unit circle

→14.6% improvement with octilinear routing

$$1 - \frac{\int_{0}^{1/2} ((\sqrt{2} - 2)y + 1)dy}{\int_{0}^{1/2} 1dy} \approx 14.6\%$$

Previous Estimates (V)

• [Igarashi et al. 2002], [Teig 2002]

- Full commercial design (Toshiba microprocessor core)
- Placed and routed with octilinearaware tools
- \rightarrow >20% wire length reduction

Which Estimate Is Correct?

Reference	λ = 3 (hexagonal)	$\lambda = 4$ (octilinear)	Model
Scepanovic, Chen et al.	13.4%	17.2%	2-pin nets Random
Nielsen et al.	5.9%	10.6%	Full chip, Manhattan placement SMT routing
Teig		14.6%	2-pin nets Manhattan circle
Igarashi et al.		>20%	Full chip, octilinear placement & routing

Our Contributions

- Estimation models combining analytic elements with constructive methods
- Separate models for
 - λ-geometry routing on Manhattan placements
 - λ -geometry routing on λ -geometry-driven placements
- Novel model features:
 - Consideration of net size distribution (2,3,4 pins)
 - Uniform estimation model for arbitrary λ

Outline

- Introduction
- λ-Geometry Routing on Manhattan Placements
 - 2-pin nets
 - 3-pin nets
 - 4-pin nets
 - Estimation results
- λ-Geometry Placement and Routing
- Conclusion

λ-Geometry Routing on Manhattan Placements

- We extend Teig's idea to K-pin nets
 - Assuming Manhattan WL-driven placer
 - Placements with the same rectilinear SMT cost are equally likely
- High-level idea:
 - Choose uniform sample from placements with the same rectilinear SMT cost
 - Compute the average reduction for λ -geometry routing vs. Manhattan routing using GeoSteiner

2-Pin Nets

Average λ-geometry WL computed by integrals:

3-Pin Nets (I)

- SMT cost L = half perimeter of bounding box
- Given a bounding box (length x ≤ L), uniformly sample all 3-pin nets within this bounding box by selecting (u, v) (u ≤ x; v ≤ L-x) uniformly at random
- Each pair (u, v) specifies two 3-pin nets
 - canonical case
 - degenerate case

3-Pin Nets (II)

- (u, v) : a point in the rectangle with area x(L-x)
 - Probability for a 3-pin net within this bounding box to be sampled: inverse to x(L-x)
 - Sample the bounding box (length x) with probability proportional to x(L-x)
- Symmetric orientations of 3-pin nets
 - Multiply the WL of canonical nets by 4
 - Multiply the WL of degenerate nets by 2

4-Pin Nets (I)

- Given a bounding box with unit half perimeter and length x (x ≤ 1), each tuple (x1, x2, y1, y2) (x1 ≤ x2 ≤ x; y1 ≤ y2 ≤ 1-x) specifies
 - Four canonical 4-pin nets
 - Four degenerate case-1 4-pin nets
 - Two degenerate case-2 4-pin nets

4-Pin Nets (II)

Procedure:

- Sample the bounding box (unit half perimeter and length x) with probability proportional to x²(1-x)²
 - (x1, x2, y1, y2): two points in the rectangle with area x(1-x)
- Uniformly sample 4-pin nets with the same bounding box aspect ratio:
 - by selecting (x1, x2, y1, y2) uniformly at random
- Scale all 4-pin nets: same SMT cost L
- Compute WL using GeoSteiner
- Weight the WLs for different cases to account for orientation

Estimated % Improvement Over Manhattan Routing

Net size	λ = 3		$\lambda = 4$		<i>λ</i> = ∞	
	M-driven	Rand	M-driven	Rand.	M-driven	Rand.
k = 2	10.57	13.52	14.65	17.14	18.84	21.47
k = 3	5.86	7.55	10.75	12.41	14.61	16.21
k = 4	5.45	6.56	9.89	11.26	13.30	14.80
Average	8.70	11.05	13.00	15.11	16.97	19.19

- "M-driven" = our sampling methodology simulating Manhattan WL-driven placement
- "Rand" = pointsets chosen randomly from unit square
- "Average" = Expected WL improvement based on net size distribution in [Stroobandt et al. 98]

Outline

- Introduction
- λ-Geometry Routing on Manhattan Placements
- λ-Geometry Placement and Routing
 - Simulated annealing placer
 - Estimation results
- Conclusion

λ-Geometry Placement and Routing

Manhattan vs. λ-geometry-aware placer

- Manhattan placer tends to align circuit elements either vertically or horizontally
- impairs WL improvement of λ-geometry routing
- λ-geometry-aware placer leads to better placements of nets for λ-geometry routing

Simulated Annealing Placer

- Objective: Min total λ-geometry SMT length
- Random initial placement
- Randomly select two cells and decide whether to swap based on the current annealing temperature and new SMT cost
- Time spent at current temperature: # swaps ~= 100 * #cells [Sechen 1987]
- Cooling schedule:
 - Next temperature = current temperature * 0.95

%WL Improvement for λ-Geometry over Manhattan Place&Route

Instance	#nets	λ = 3	$\lambda = 4$	λ = ∞
C2	601	3.43	8.92	11.04
BALU	658	3.96	9.29	11.07
PRIMARY1	695	5.67	10.31	13.03
C5	1438	6.24	11.48	12.73

For λ = 3, WL improvement up to 6%
For λ = 4, WL improvement up to 11%

Cell Shape Effect for $\lambda = 3$

Instance	#nets	square cell	hex. cell
C2	601	3.43	4.81
BALU	658	3.96	7.13
PRIMARY1	695	5.67	7.32
C5	1438	6.24	8.34

• Square cell

- Relatively small WL improvements compared to λ = 4 and ∞
- Hexagonal cell [Scepanovic et al. 1996]
 - WL reduction improved
 - WL improvement up to 8%

Layout of hexagonal cells on a rectangular chip

"Virtuous Cycle" Effect (I)

- Estimates still far from >20% reported in practice
- Previous model does not take into account the "virtuous cycle effect"

"Virtuous Cycle" Effect (II)

• Simplified model:

- Cluster of N two-pin nets connected to one common pin
- Pins evenly distributed in λ-geometry circle with radius R
- $\lambda = 2$
 - area of the circle $A = 2R^2$
 - total routing area: A_{routing} = = (2/3) RN
- Assume that A_{routing} ~ A
 → (2/3)RN ~ 2R²
 → R ~ N/3
 → A_{routing} ~ (2/9)N²

"Virtuous Cycle" Effect (III)

- N^2 • $\lambda = 2$: A_{routing} ~ 2/9
- $\lambda = 3$: A_{routing} ~ $8\sqrt{3}/81$ N²
- $\lambda = 4$: A_{routing} ~ $\sqrt{2}/9$ N² $\lambda = \infty$: A_{routing} ~ $4/9\pi$ N²

→ Routing area reductions over Manhattan geometry:

$$\lambda = 3$$
 $\lambda = 4$
 $\lambda = \infty$

 23.0%
 29.3%
 36.3%

Conclusions

- Proposed more accurate estimation models for WL reduction of λ-geometry routing vs. Manhattan routing
 - Effect of placement (Manhattan vs. λ-geometrydriven placement)
 - Net size distribution
 - Virtuous cycle effect
- Ongoing work:
 - More accurate model for λ-geometry-driven placement

Thank You !