Switching Activity Analysis and Pre-Layout Activity Prediction for FPGAs

Jason H. Anderson and Farid N. Najm

ACM/IEEE Int’l Workshop on System Level Interconnect Prediction (SLIP)
Monterey, CA, April 5-6, 2003

Dept. of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario, Canada
Motivation

• Today’s largest FPGAs are “hot”
 – consume watts of power
 • Xilinx Virtex-II CLB: 5.9 µW/MHz [Shang02]
 • Modest design: 2500 CLBs, 100 MHz → 1.5 W

• Optimize FPGA power consumption:
 reduce cooling/packaging costs,
 new apps, better reliability

 Characterize, then optimize
FPGA Power Dissipation

- Power breakdown:
 - Majority is dynamic
 - Interconnect dominates:
 - Xilinx Virtex-II: 50-70% of power dissipated in interconnect [Shang02];
 similar results: [Poon02, Kusse98]
 - Average dynamic power:

\[
P_{\text{avg}} = \frac{1}{2} \sum_{i \in \text{nets}} C_i \cdot f_i \cdot V^2
\]

- capacitance
- toggle rate (switching activity)
- supply voltage

\[
\text{toggle rate (switching activity)}
\]
Switching Activity

- Different views:
 - zero delay activity: all dlys are zero
 - logic delay activity: logic dlys only
 - routed delay activity: both logic/routing dlys

- Delays introduce glitches: spurious transitions that consume power

\[
\begin{align*}
 &i_0 & \quad \text{dly} = 1 \\
 &i_1 & \quad \text{dly} = 2 \\
 &z & \\
\end{align*}
\]

\[
\begin{align*}
 &i_0 & \quad \text{glitch} \\
 &i_1 & \\
 &z & \\
\end{align*}
\]
Motivation

• Activity analysis *(part 1 of this work)*:
 – Study extent of activity change due to glitches
 – FPGA delays dominated by interconnect \rightarrow severe glitching in this technology?
 – Low-power CAD based on zero delay activities \rightarrow valid for FPGAs?
Motivation

• State-of-the-art FPGAs can implement complex systems with millions of gates
 – Design teams, not just individuals
 – Increasingly long design cycle

• Early, high-level power estimation: minimize design time & cost
Motivation

• Layout is most time-consuming part of FPGA CAD flow.
• Pre-layout power estimation requires:
 – Net capacitance prediction
 – Net activity prediction (part 2 of this work)
Activity Analysis

- Simulation-based approach
- Map 14 circuits into Xilinx Virtex-II
- Simulate with zero’ed delays, logic delays, routed delays
- 2 vectors sets: high or low input activity
 - high (low) activity vector set: each input has 50% (25%) probability of toggling between vectors
Activity Analysis Flow

- HDL circuit
 - HDL synthesis (Synplify Pro)
 - Technology mapping
 - Placement and routing
 - Mapped design
 - Routed design
 - Xilinx tools
 - Simulation vectors
 - Zero or logic delay simulation (Synopsys VSS)
 - Switching activity data
 - Routed delay simulation (Synopsys VSS)
 - Switching activity data
Effect of Glitching on Transition Count

High activity vector set results:

% incr. in # of transitions vs. zero delay simulation

avg: 72.5%

avg: 28.8%

logic delay simulation
routed delay simulation
Activity Analysis

- Substantial activity increase when routing delays are accounted for
 - Accounting for logic delays is not enough -- interconnect dominates delay

- High activity vector set:
 - act. incr. zero → logic: avg: 28%, max: 84%
 - act. incr. logic → routing: avg: 34%, max: 61%
Effect of Glitching on Transition Count

Low activity vector set results:

% incr. in # of transitions vs. zero delay simulation

logic delay simulation
routed delay simulation

avg: 42.4%
avg: 19.7%
Activity Analysis

- Low activity vector set glitching 1/2 to 2/3 as severe as high activity vector set
 - Fewer inputs switch simultaneously → fewer simultaneous transitions on different paths to net
 - act. incr. zero → logic: avg: 20%, max: 66%
 - act. incr. logic → routing: avg: 19%, max 35%
Effect of Delay Optimization

- Previous results: P & R run without performance constraints
- Timing-driven P & R may lead to smaller interconnect delays → less glitching?
Effect of Delay Optimization

- Glitching reduction from timing-driven P & R is not that substantial
Activity Prediction

• Problem difficulty:
 – How “hard” is the prediction problem?
 – What degree of accuracy can be expected?

• Gauge “noise” in the prediction problem using a specially-designed circuit
Problem Difficulty

- Regular circuit:

 - Has structural & functional regularity

 - Each LUT implements 4-input AND function

 - Has structural & functional regularity
Problem Difficulty

• Implement “regular” circuit in Virtex-II
• Analyze activity increase on LUT output signals from zero to routed delay sim.

• Variability in increase (across LUTs) due to delays known only after layout:
 – routing delays
 – different input-to-output LUT delays
Represents noise we cannot predict
Problem Difficulty

% increase in activity
(Zero delay sim. to routed delay sim.)

LUT output signal
Problem Difficulty

- Variability in activity increase significant:
 - 0-40% (low activity vector set)
 - 0-100% (high activity vector set)

- Accurate pre-layout activity prediction for FPGAs is a difficult problem
Activity Prediction

- Predict net glitching using zero (or logic) delay activity, circuit properties
- Idea: glitches propagated or generated

Abstract view:

\[\text{predict}(z) = \alpha \cdot \text{gen}(z) + \beta \cdot \text{prop}(z) + \phi \]
Generated Glitches

- FPGA logic elements are uniform, have equal drive capability
- Buffered routing switches → connection delay approx. fanout independent
- Predict pre-layout path delay using path length (# of LUTs)

- Unequal path delays lead to glitches
Generated Glitches

- Let $PL(x) =$ set of path lengths to node x
- Define # of path lengths introduced by node y:

$$IPL(y) = \min_{x_i \in \text{inputs}(y)} \{|PL(y)| - |PL(x_i)|\}$$
Generated Glitches

\[\text{gen}(y) = \text{IPL}(y) + \gamma \cdot \text{depth}(y) \]

- Depth term included since glitching likely to be worse for “deeper” nodes
Propagated Glitches

• Propagate term uses notions of Boolean difference & static probability
• Consider logic function: \(y = f(x_1, x_2, \ldots, x_n) \)
• Boolean difference of \(y \) w.r.t. \(x_i = \)

\[
\frac{\partial y}{\partial x_i} = f_{x_i} \oplus f_{\neg x_i}
\]

function \(f(\ldots) \) with \(x_i \) replaced by 1

function \(f(\ldots) \) with \(x_i \) replaced by 0
Propagated Glitches

- **Key:** \(\frac{\partial y}{\partial x_i} = 1 \) \(\rightarrow \) transition on \(x_i \) will cause transition on \(y \)

- Static probability: fraction of time logic signal is in “1” state

\[
P\left(\frac{\partial y}{\partial x_i} \right) \text{ probability a transition on } x_i \text{ will result in transition on } y
\]

- Relevant to whether a glitch on \(x_i \) will become a glitch on \(y \)
Propagated Glitches

\[
prop(y) = \sum_{x_i \in \text{inputs}(y)} P \left(\frac{\partial y}{\partial x_i} \right) \cdot \text{predict}(x_i) \cdot za(x_i)
\]

- \(za(x_i) = \) zero delay activity of \(x_i \)
 - replace with logic dly activity (if available)
Experimental Methodology

- Divide 14 circuits into 2 groups: characterization circuits and test circuits

1) Tune model for specific CAD flow & device using characterization circuits
2) Apply model to predict activity in test circuits
Experimental Methodology

- Two prediction scenarios:
 - predict routed dly activity from zero dly act.
 - predict routed dly activity from logic dly act.

- Static probability, zero/logic activity extracted from simulation
 - parameters can also be computed using probabilistic approaches
Model Tuning

- High activity vector set simulation of characterization circuits
Results

Prediction from *zero* delay activity data:

- **zero delay activity mean absolute error**
- **predicted activity mean absolute error**

\[
	ext{err} = \sum_{n \in \text{nets}} \left| \frac{za(n) - ra(n)}{ra(n)} \right|
\]

\[
	ext{err} = \sum_{n \in \text{nets}} \left| \frac{pa(n) - ra(n)}{ra(n)} \right|
\]

- mean error reduced by factor of 2 for most circuits
Results

Prediction from *logic* delay activity data:
Results

Error histogram for zero delay activity, predicted activity:

![Error histogram graph showing the distribution of errors between zero delay activity and predicted activity.](attachment:image.png)
Results

Error histogram for logic delay activity, predicted activity:
Results Summary

- Mean absolute error in activity reduced by factor of 2 for many circuits
- Zero/logic delay activities have one-sided error bias
 - Will consistently underestimate power
- Prediction model: one-sided error bias is eliminated
 - Better avg. power estimates
Summary

- Switching activity analysis:
 - Differences between zero, logic, routed delay activity can be significant
 - Glitching severity depends on input activity

- Pre-layout activity prediction:
 - A difficult problem
 - Demonstrated prediction approach based on circuit structure/functionality
 - Mean activity error reduced, one-sided error bias eliminated