

Stochastic Wire Length Sampling For Cycle Time Estimation

Muzammil Iqbal, Ahmed Sharkawy, Usman Hameed &

Phillip Christie

{iqbal,sharkawy,hameed,christie}@ece.udel.edu

Stochastic Cycle Time Model

• Global Wire length distribution		Pseudo -	- pla	cemen	t
extracted from a standard netlist, ibm03p (<i>ISPD</i>) of approximately 27000 cells.	105	Global Wir	e length	Distributior	
• The length distribution (N) is determined by using	10 ⁴				
N(L) = KqD	ម្ <u></u> 10 ³				
Where	qumN				
N(L) is number of wires of length L.	10 ²				
q is occupancy probability given by	10 ¹				
$q = l^{2\rho - 4}$	100			·····	
$\rho = rent exponent.$	10 [°]	10 ¹	10 ² lenath	10 ³	10 ⁴
\mathbf{K} is a normalization coefficient.					
D is all probable sites for cell					
placement for a given floor plan.					
				Electrical	& Computer
					Engineering

Global Wire length estimate -

Wire Allocation (pseudo routing)

Wire Allocation

Engineering

- The global wire length distribution is allocated to a six layer process.
- Pseudo Routing renders an allocated distribution which is used in wire sampling
 Electrical & Computer

Experiments

The Setup

- Cycle Time Estimates with
 - 1. Local Delays (Excluding t_{global} term in Sakurai Equation)
 - 2. Local and Global Delay (Including t_{dobal})

Cycle time:

$$t_{cycle} = t_{local} + t_{global} + t_{setup} + t_{flip-flop}$$

$$1-skew$$

- Fixed Fan Out range from 1 to 3.
 - Calculation of Clk_{avq} (based on Mean Value model).
 - Each Experiment was run of 1000 trials for above conditions

Local Clock Estimate

Statistical Analysis	Fanout 1	Fanout 2	Fanout 3
Standard Deviation (Ghz)	0.0573	0.0731	0.8266
Mean (Ghz)	1.3740	1.3276	1.2860
Clk _{avg} (Ghz)	1.3751	1.3070	1.2598

Statistics

Global Clock Estimate

Statistical Analysis	Fanout 1	Fanout 2	Fanout 3	
Standard Deviation (Ghz)	0.0495	0.0574	0.0679	
Mean (Ghz)	1.2805	1.2096	1.1499	
Clk _{avg} (Ghz)	1.2683	1.1951	1.1298	

Observations

- Fixed FanOut Vectors ranging from 1 to 3 shows a decreasing mean clock rate and increasing Standard Deviation with increasing FanOuts.
- Including a wire of maximum length (Global Estimates) reduces mean clock rate with relative reduction in standard deviation.
- The Clk_{avg} values based on mean value model lies in close vicinity of mean clock rate estimated for each set of experiments.

Conclusions

- The scheme is suitable for investigating variable geometries in multi-layer wiring schemes.
- The estimates have an expected mean value and a standard deviation of approximately 5%.
- The median *global* clock rates do not differ significantly from *local* rates.
- There is a sharp fall in the clock rate distribution after the median values.
- The scheme gives a measure of distribution *skewness*, thereby modeling the inherent stochastic nature of layout process.
- The Clk_{avg} being in close vicinity of the median rates, validates the appropriateness of the mean value model for logic depth of 25.