Technology Trends in Power-Grid-Induced Noise

Sani R. Nassif IBM Research – Austin nassif@us.ibm.com Onsi Fakhouri MIT onsi@mit.edu

Farid Najm (from *TRS data)

2

Motivation

- Power is increasing (hot plates, nuclear reactors etc...).
- V_{DD} is decreasing (V_{TH} decreasing slower to manage leakage).
- Frequency is increasing.
- \clubsuit Dynamic and static I_{DD} are increasing (electromigration!).
- IR and Ldi/dt noise becoming a larger part of the total noise budget.
- \blacklozenge Impact of V_{DD} variation on delay is increasing.
 - (Because of reduced overdrive V_{DD}-V_{TH})
- Understanding the origins and trends of supply induced noise becoming critical.

Leakage Current "Predictions"

4

Tak Ning (from *TRS data)

Outline

Canonical Power Grid Circuit

- Grid is predominantly resistive.
- Package is predominantly inductive.
- Load is current.
- Other circuits ~ lossy decoupling capacitance.

Grid Capacitance

 \circledast Distance scale for power grid is in the range of $10 \mu m.$

Tor the scale for device capacitance is in the range of $T_{OX} \sim 20$ nm.

Capacitance "density" of devices makes grid capacitance unimportant.

- Worst case for grid wire.
- $L_{(pH)} \sim 0.2 \ I \ln(2I/(w+t) + 0.5)$
- Package parasitics much greater.

W

Grid Resistance

Same Conductor...

♦ R ~ 0.1 l/(w t)

Package parasitics much smaller.

Noise Model + L

With package, maximum noise becomes: $V_{\text{max}} \approx \mu t_p R_a + \mu L - \mu R_a^2 C_d (1 - e^{-t_p/\tau})$ DC Package Decap Accurate expression: $V_{max} = \mu t_p R_q + \mu L - \mu R_a^2 C_d + \Psi_1 + \Psi_2$ $e_1 = \exp -(\tau + \beta)t_p/2C_dL$ $e_2 = \exp -(\tau - \beta)t_p/2C_dL$ $\beta = (\tau^2 - 4LC_d)^{\frac{1}{2}}$ $\Psi_1 = (e_1 + e_2) \mu (L - C_d R_g^2) / 2$ $Ψ_2 = (e_1 - e_2) μ C_d (τ R_a^2 - L(3R_a - R_d)) / 2β$

Quality of Approximation

Outline

Technology Variables

- We need to find trends in the parameters of our canonical model.
- Roadmaps provide insight into V_{DD}, Area, Power, Frequency etc...

Technology Parameters

Year		F	V _{DD}	Area	Power	Power
	(nm)	(MHz)	(Volts)	(² mm)	(Watts)	Density
1999	140	1200	1.8	450	90	0.2
2000	120	1321	1.8	450	100	0.22
2001	100	1454	1.5	450	115	0.26
2002	85	1600	1.5	509	130	0.26
2003	80	1724	1.5	567	140	0.25
2004	70	1857	1.2	595	150	0.25
2005	65	2000	1.2	622	160	0.26

Dependencies

- But proper power grid planning can make a difference here!
- ♦ L is ~ constant
 - Package learning curve is much shallower than technology learning curve!

Outline

Open issues and low-hanging fruit.

Power Grid Design Trends

Number of levels of metal is increasing.

- More degrees of freedom for tradeoff between interconnect and power.
- More effort in grid design.
- Cu and advanced CMP processes place more design restrictions on wires.
 - Example: maximum width, metal density, oxide density within metal area, etc...
- Number of package power pins for high power chips increasing (fixed I_{max} per pin).

Package Choices

Area Array (C4)
Power distributed across all the chip area.

Wirebond (periphery)
 Power brought in from edge of chip.

SOC and IP Constraints

 Hard IP places constraints and creates discontinuities in grid design.

Often dealt with using "rings" (area hit).

Power Grid Design Issues

- Power Grid impacts implementation of every component at the PD level.
- Placement of power-hungry devices (I/O buffers, clocks, etc...).
- Placement and allocation of decoupling capacitors to minimize noise.
- Interface between incompatible power distributions costly in routing resources.

It is not unthinkable to use 15 to 20% of wiring resources for power distribution.

Buffer Placement Algorithm

ICECS '00 paper (J. Kozhaya et. al.)

Idea: Use sensitivity information to place I/O buffers one at a time while satisfying drop thresholds.

The A⁻¹ (system matrix) provides sensitivity of voltage drops to placement of I/O buffers.

I/O buffers only appear in the RHS of the system of linear equations!

Algorithm Description

- 1. Sort I/O buffers and initialize *drop slacks*.
- 2. For buffer B_k, compute upper bounds on the allowable current at every node n_i which is a potential placement site.
- 3. Assign buffer B_k to node n_m where n_m is the node with the largest upper bound.
- 4. Update the drop slack at all nodes:
 - $s(j) = s(j) a_{jm}^{-1} I_{k'} \forall j$
- If s(j) < 0, report a violation at node n_j.
 Continue at step 2 with the next buffer.

Results

Design	# Buffers	# Nodes	Violations	CPU Time
C1 (0.18 µ)	616	4602	0	3.79
C2 (0.13 µ)	588	3325	0	3.04

Technique finds a *feasible* placement.
CPU time is fast enough for iteration.

Results were verified using detailed simulation.

Is This an Easy Problem?

Impact of Decap Sizing

Outline

Power Grid Planning

Power grid is usually designed BEFORE detailed implementation has started.

Predefined "Image" for ASIC or SOC implementations.

Grid is defined at a time when the spatial information about power requirements is approximate, therefore rampant overdesign!

IBM Power Grid Planner

							ALSIM I .						· • [
							File Action	Show/Hid	e	×	0 Y	BUTTON	IS	
			ALS:	IM			Technology	Contacts	3 2D-plot	3D-plot	EM-plot C	ptions Hel	p	
File Ac	tion Show/H	ide	×	X 36 Y	280 BU	TTONS ZOC				Layer	Data			
Technol	logy Contac	ts 2D-plot	3D-plot	EM-plot	Options	Help	NAME		RHO	WIDTH	РІТСН	EM Limit	Via Res	COLOF
								_	ohm/square	grid units	grid units	mA	ohms	_
							M1		0.08	2	30	0.7	0.1	
							M2	<u> </u>	0.045	2	30	0.7	0.1	
							M3		0.045	2	38	1	0.1	
				····· · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •		M4		0.045	2	30	1	0.1	
							MJ		0.045	2	38	1	0.1	
							МК	IIII	0.045	2	30	1	0.1	
							MQ		0.02	9	49	10	0.1	
							LM	Ī	0.02	9	49	10		
								_	-					
										Regio	n Data			
							Width	17	15		Hei	ight 1	715	
										Power	Data			
						I I I	Power	(₩)	0.238	Vdd (V	V) 1.2	Mod	e normal	
888					8 101 100 000000	- 🔶	Spre	ads	heet-	like				
						¥	Spic	cuus			cts			
							Inter	tace	e to d	etine	e			
										aria	ı —			
							over	an p	ower	Y IC	J .			
													31	

IBM Power Grid Planner

Lots of Visualization and Analysis...

IBM Power Grid Planner

- Usually used to explore design options very early in the design cycle.
- Tool needs to be very fast (interactive).
- **Typical questions:**
 - Can a grid with X% density handle P watts per square mm?
 - How much decoupling capacitance does an I/O buffer need? How close does it need to be?
 - How much do I gain by introducing skew?

Outline

Planning Examples

Question:

What is the impact of wiring resources on a per layer basis?

Methodology:

- Perform a full factorial experiment varying wiring density on each level from 5% to 20% and measure grid performance.
- Build a statistical model of grid performance vs. layer densities.

Example of Results

Analysis of Results

Linear regression of noise vs. layer densities.

name	vddmax	vddmean	gndmax	gndmean
rho	0.948	0.941	0.939	0.935
range	0.0527,0.1804	0.0364,0.1142	0.0360,0.1296	0.0182,0.0585
K	0.18164	0.12115	0.12010	0.05549
d0	-0.02428	-0.00001	-0.02616	-0.00520
d1	-0.10201	-0.03502	-0.13665	-0.06095
d2	-0.02937	-0.00537	-0.02764	-0.00739
d3	-0.12701	-0.06568	-0.13211	-0.06287
d4	-0.05253	-0.03394	-0.02857	-0.00947
d5	-0.39699	-0.33490	-0.13706	-0.06973
			Directional dependence! (anisotropy)	
				38

Outline

Open issues and low-hanging fruit.

Open Issues

Coupling of power and timing results.

- Some early results, but nothing real yet!
- Fast modeling and prediction of chip/package resonance.
 - Approximations OK, but better numerical analysis can make results more accurate.

Vector-less Chip-level power estimation.

- Most design flows are not yet focused on power. Need a method to jumpstart power analysis.
- Coupling of power and thermal results + impact on reliability.
 - Same math, same inputs...

Low Hanging Fruit

- Improved modeling of load currents and decoupling capacitance.
 - Holistic rationalization of accuracy requirements.
- Integration of placement aspects of PD with power grid analysis.
 - Moving loads around can be done very efficiently (new RHS and forward/backward solver of existing LU factors).

Use of sparse inductance formulations to speed up chip/package analysis.

Reuse of existing simulation infrastructure.