Analytical Signal Integrity Verification Models for Inductance-Dominant Multi-Coupled VLSI Interconnect

Seongkyun Shin*, Yungseon Eo*, William R. Eisenstadt**, Jongin Shim*

* Dept. of Electrical and Computer Eng., Hanyang University, Ansan, Kyunggi-Do, 425-791, Korea.

** Dept. of Electrical and Computer Eng., University of Florida, Gainesville, FL 32603, USA.

Hanyang University

Giga-Electronic System Laboratory

Outline

- Technical Trend and Problems
- TWA-Technique
- Multi-Coupled Lines
- Analytical Models and Verification
- Summary and Conclusion

Giga-Electronic System Laboratory

Technical Challenge

Technical Trend

High-Speed, **High-Density**

Inductance-Dominant System

Longer and Tighter Spacing

Problems

More Complicated Signal Integrity Problems

Delay, X-talk, Ringing, Glitch

Accuracy? Computation Time? Stability?

Research Goal

New Paradigm(TWA-Based)

3

• Fast, Accurate, Analytical Signal Integrity Models

Giga-Electronic System Laboratory

Hanyang University

Problems

System Function of a Single Transmission Line

Unit Step Response in a Single TL

$$V_{0-far}(s) = \frac{1}{s} \cdot H_{far}(s)$$

$$= \frac{1}{s \cdot \left\{ \cosh\left(\gamma\ell\right) + \frac{Z_0}{Z_L} \sinh\left(\gamma\ell\right) + \frac{Z_s}{Z_0} \sinh\left(\gamma\ell\right) + \frac{Z_s}{Z_L} \cosh\left(\gamma\ell\right) \right\}}$$

$$v_{0-far}(t) = L^{-1} \left\{ \frac{1}{s} \cdot H_{far}(s) \right\}$$

$$V_{0-near}(s) = \frac{1}{s} \cdot H_{near}(s)$$

$$= \frac{Z_0 Z_L \cosh\left(\gamma\ell\right) + Z_0^2 \sinh\left(\gamma\ell\right)}{s \cdot \left\{ Z_0 \left(Z_s + Z_L\right) \cosh\left(\gamma\ell\right) + \left(Z_0^2 + Z_s Z_L\right) \sinh\left(\gamma\ell\right) \right\}}$$

$$v_{0-near}(t) = L^{-1} \left\{ \frac{1}{s} \cdot H_{near}(s) \right\}$$
Require Numerical Integration!!

Hanyang University

Giga-Electronic System Laboratory

Dominant Pole Approximation(using 3-Dominant Poles)

Far-end

$$H_{far}(s) = \frac{v_2}{v_0} = \frac{1}{\cosh(\gamma \ell) + \frac{Z_0}{Z_L} \sinh(\gamma \ell) + \frac{Z_s}{Z_0} \sinh(\gamma \ell) + \frac{Z_s}{Z_L} \cosh(\gamma \ell)}$$

$$v_{0-far}(t) = L^{-1} \left\{ \frac{1}{s} \cdot H_{far}(s) \right\} \approx L^{-1} \left\{ \frac{1}{s(s-s_1)(s-s_2)(s-s_3)} \right\}$$

$$= L^{-1} \left\{ \frac{a_0}{s} + \frac{a_1}{s-s_1} + \frac{a_2}{s-s_2} + \frac{a_3}{s-s_3} \right\} \square v_{03-far}(t)$$
Do not Require
Near-end

$$H_{near}(s) = \frac{v_1}{v_0} = \frac{Z_0 Z_L \cosh(\gamma \ell) + Z_0^2 \sinh(\gamma \ell)}{Z_0 (Z_s + Z_L) \cosh(\gamma \ell) + (Z_0^2 + Z_s Z_L) \sinh(\gamma \ell)}$$

$$v_{0-near}(t) = L^{-1} \left\{ \frac{1}{s} \cdot H_{near}(s) \right\} \approx L^{-1} \left\{ \frac{1}{s} \cdot \frac{q_1 + q_2 s + q_3 s^2 + q_4 s^3}{p_1 + p_2 s + p_3 s^2 + p_4 s^3} \right\} \square v_{03-near}(t)$$

Hanyang University

Giga-Electronic System Laboratory

Problems of 3-Pole Approximation

Hanyang University

Giga-Electronic System Laboratory

Traveling-Wave-Based Waveform Approximation(TWA)

[Y. Eo, et al., "Traveling-wave-based ~," will be published in IEEE T-CAD]

Hanyang University

Giga-Electronic System Laboratory

TWA-Based Time-Domain Transient Signal Characterizations

Hanyang University

Giga-Electronic System Laboratory

Effective Time of Flight : Loading Effect

Hanyang University

Giga-Electronic System Laboratory

Frequency-Domain Characteristics (Low-Frequency Characteristics)

with 3-Pole-Based Frequency Domain Response

"Reflection" means "fast transient".

Hanyang University

Time-Domain Characteristics (High-Frequency Characteristics)

We can determine the analytical form of expressions

Since we know two points.

Hanyang University

Verification of TWA in a Single Line

The second second			FL Para	ameter	'S		and the second of the second of				
M. A.L.	Width	R	L	С	R _S	C _L	10mm C.				
Capacitive	<u>μm</u> 0.8	<u>Ω/cm</u> 179.6	[nH/cm] 14.296	[pF/cm] 0.996	<u>[</u> <u>(</u> 2]	[pF]	1.2µm W metal oxide(SiO ₂) 1µm				
	1.0	143.7	13.851	1.035			R _s Vin 300µm silicon substrate				
	1.6	89.8	12.913	0 2 50 0	01~1						
	2.0	71.8	12.468	1.228					0 20		
	5.0	28.7	10.645	1.808							
Inductive	10.0	14.4	9.276	2.776							

Hanyang University

Step Responses

Unlike the 3-pole approximation,

TWA is accurate for inductance-dominant lines.

Hanyang University

Application of TWA to Multi-Coupled Lines

Hanyang University

Giga-Electronic System Laboratory

TWA-Based Multi-Coupled Line Transient Analysis

Hanyang University

Giga-Electronic System Laboratory

Verification of TWA for Multi-Coupled Lines

Hanyang University

Giga-Electronic System Laboratory

Signal Transients and Crosstalk

Hanyang University

Giga-Electronic System Laboratory

TWA-Based Analytical Signal Integrity Models

Hanyang University

Frequency-Domain Response

Hanyang University

Giga-Electronic System Laboratory

TWA-Based Approximation

$$V_{i}(x,\omega) = \sum_{k=1}^{n} \left(\frac{Z_{0k}}{R_{si} + Z_{0k}} \right) s_{ik} b_{k} \left(e^{-\gamma_{k}x} + \Gamma_{k} e^{\gamma_{k}(x-2\ell)} \right)$$
TWA for the k-th Mode

$$V_{i}(x,\omega) \approx \sum_{k=1}^{n} s_{ik} b_{k} Q_{k}(x,\omega)$$

$$Q_{k}(x,\omega) : 3 \text{-pole approximation function}$$

$$v_{i}(x,t) \approx \sum_{k=1}^{n} s_{ik} b_{k} q_{k}(x,t)$$

$$q_{k}(x,t) : \text{time-domain counter part for}$$

$$3 \text{-pole approximation function}$$

$$v_{i}(x,t) \approx \sum_{k=1}^{n} s_{ik} b_{k} p_{k}(x,t)$$

$$p_{k}(x,t) : \text{time-domain approximation function}$$

General Waveform
$$v_i(x,t) \approx \sum_{k=1}^n \left\{ s_{ik} \left(\sum_{j=1}^n s'_{kj} v_{sj} \right) p_k(x,t) \right\}$$

Hanyang University

Giga-Electronic System Laboratory

Closed Form of Delay Model

Hanyang University

Delay Model for Linear Region

Hanyang University

Giga-Electronic System Laboratory

Delay Model for RC-like Region

Hanyang University

Giga-Electronic System Laboratory

Closed Form of Overshoot

Hanyang University

Giga-Electronic System Laboratory

Closed Form of Peak X-talk

$$\left(MAX\left(\left|\sum_{k=1}^{n} \left\{s_{ik}\left(\sum_{j=1}^{n} s_{kj}^{'} \cdot v_{sj}\right) \cdot T_{k}\left(t_{f(n)}^{-}\right)\right\}\right|, \left|\sum_{k=1}^{n} \left\{s_{ik}\left(\sum_{j=1}^{n} s_{kj}^{'} \cdot v_{sj}\right) \cdot T_{k}\left(t_{f0(n)} + \delta_{(n)}\right)\right\}\right|\right)\right)$$

Hanyang University

Giga-Electronic System Laboratory

Closed Form of Glitch Signal

Hanyang University

Giga-Electronic System Laboratory

Verification of Analytical Signal Integrity Models

Basic Patterns	Variables Test Item	Line Length	Switching Pattern	Source & Load	Input	
	Delay		010			
	X-Talk	10mm	↑0 ↑	$R_{s}=5000$	3.3V	
	Overshoot		010	С _L =0.трі		
	Glitch	10mm	↓↑↓	R _S =50W,C _L =0.1pF	3.3V	

Hanyang University

Verification Data(1)

Variable			Active Line		Active Line				Quiet Line				
Ling Longths	Line Length	Delay [psec]			C]	Overshoot [V]				Crosstalk [V]			
		SPICE		T١	NA	SPI	CE	TWA		S	3PICE		TWA
010 Switching	1mm	19.2		1	7.4	3.59	13 3.38		854	0.5807		().6821
2 MANNIN Z	2mm	35.5		33	3.7	3.5868		3.4848 0		0	.5762	().6592
S% Error	5mm	85.2		8	3.6	3.4601		3.4	3.4139		0.53 ().5652
Tunn	10mm 168.8		8.8	16	6.8	3.2548		3.2	2060 0		.5192).4446
	Seales -	1		15.5	and a	T.		10.4	SAT		18 S.S.		
Variable	Owitabi		Active Line D		Delay /		Active Line		/ 1	Quiet Line		Line	
Switching Patterns	Switchi	ng		[psec]			Oversi		100t [V]	Cros	SSI2	IIK [V]
	Patterns		S SPIC		TWA		SPI	CE	TWA	4	SPICE	Ξ	TWA
Approximately	0↑0	168		.8	16	6.8	3.2548		3.2082		0.5192	2	0.4446
2% error	$\uparrow\uparrow\uparrow$		167.6		165.7		4.03	301	3.986	60			
Mar .	↑ 0 ↑		17	0 16		5.9	3.52	262	32 3.582		1.015	3	1.0275

Hanyang University

Verification Data(2)

Hanyang University

Verification Data(3)

Glitch Signal	Line	Delay	[psec]	Glitch P	eak [V]	, MML.
(↓↑↓ Switching)	Length	SPICE	TWA	SPICE	TWA	Approximately
	1mm	10.7	9.5	2.452	3.069	15% Error
Variables	2mm	18.9	16.9	2.4743	2.9691	overestimation)
Line Lengths	5mm	51	46.4	2.2505	2.5470	
	10mm	258.4	275.6	1.8435	2.0068	

Non-Identical Lines	items	SPICE	TWA-based	Error[%]	MM
Variables	50% delay	158.6 psec	155.7 psec	1.8	Approximately
Line Width	Overshoot	3.2265 V	3.2855 V	1.8	5% Error
• Spacing	Crosstalk	0.5014 V	0.5215 V	4.0	

Hanyang University

Giga-Electronic System Laboratory

Execution Time Computation

Execution	SPI	CE	Model AMD Athlon 750MHz				
Environment	SUN Ultra	asparc-10					
			王书 章官福				
Execution Time	Items model	3-lines [sec]	5-lines [sec]	Output			
	SPICE	78	197	Waveform			
	Eq. (14)	0.03	0.06	50% delay			
	Eq. (18)	0.03	0.06	Overshoot			
	Eq. (19)	0.03	0.06	Crosstalk			

2500~3000 Times Faster than SPICE !!

Hanyang University

Summary of the Presentation

Hanyang University

Conclusion

New Analytical Signal Integrity Models.
 Excellent Agreement with Approximately 5% Error.
 Considered to be a Good Conservative Estimation.
 2500 ~ 3000 times Faster than SPICE Simulation.

Hanyang University

Giga-Electronic System Laboratory