Tutorial on Congestion Estimation

Taraneh TaghaviFoad DabiriAni NahapetianMajid Sarrafzadeh

Embedded and Reconfigurable Systems Lab Computer Science Department University of California, Los Angeles

Invited Talk, SLIP Workshop March 17, 2007

Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion

Motivation

- To achieve more efficient designs => combining frontend floorplanning and physical placement.
- The total wirelength affects three major parameters:
 - Chip size
 - Clock frequency
 - Power dissipation.
- Interconnect length is a measure of the quality of the placement
- accurate predictions of circuit properties are necessary to limit the vast search space

Motivation

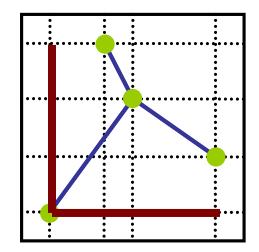
New wirelength and congestion prediction methods are needed:

- Increase in size and sophistication of circuits
- Decrease in physical feature size
- Presence of IP blocks
 - Soft IP
 - Hard IP
- Accurate prediction help improve
 - floorplanning
 - Placement
 - routing

Integrated WL and Cong. Prediction

- Minimizing the total routed wirelength a fundamental goal
- In the presence of IP blocks, alleviating congestion after placement may result in an abrupt increase in wirelength
 - Congestion needs to be estimated early enough
- Internal routing demand is well-correlated with the length of interconnects
 - Congestion estimation needs the information of wirelength
- Detour around the congested area with no IP blocks.
 - Wirelength estimation may need to know the congestion map of the circuit
- Congestion and wirelength estimation are dependent

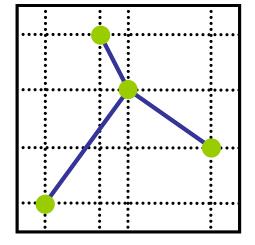
Outline


- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion

WL Estimation: Individual Net

Half Perimeter Bounding Box

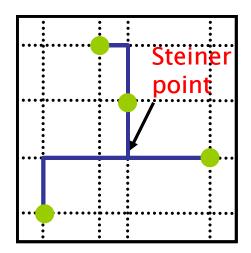
- Optimal solution for 2-pin and 3-pin nets
- Lower bound for nets with higher degree.
- However, it can significantly underestimate wirelength for higher-degree nets.
- Net weighting technique to scale up the HPWL estimation.



WL Estimation: Individual Net

Minimum Spanning Tree

- A spanning tree $T = \{V_T, E_T\}$ of a graph is a sub-graph T of G, where T is a tree (no cycles) and such that $V_T = V$ and $E_T \subset E$.
- MST = a minimum weight spanning tree over a weighted graph
- Can produce good wirelength estimation in reasonable amount of time.
- Best Time complexity = $O(n \log (n))$
- Simple O (n²) time implementation of Prim's algorithm is usually used

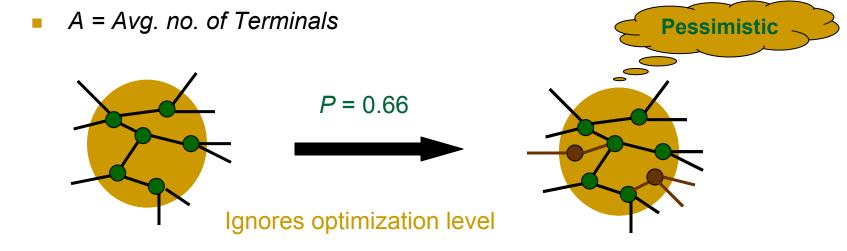


WL Estimation: Individual Net

Rectilinear Steiner Minimal Tree

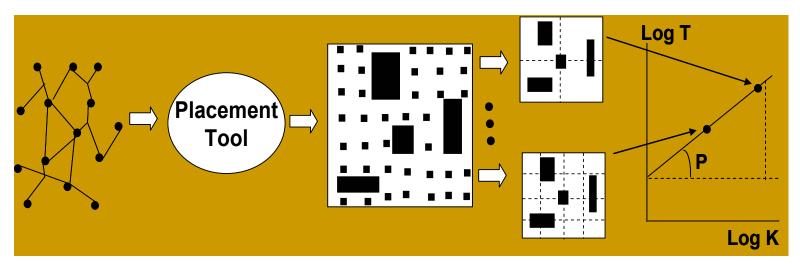
- Given a set P of n points, find a set
 S of Steiner points such that MST
 (P S) has the minimum cost.
- Optimal RSMT can always be constructed based on the Hanan grid.
 - the length of an edge in the Hanan grid is equal to distance
- RSMT is NP complete
- Good heuristic: Iterative 1-steiner RSMT

Rent's Rule


- Base for most of WL estimation methods
- Empirical power law, T=AC^P
- A = Rent coefficient
- P= Rent exponent
 - Higher rent exponent \rightarrow Higher complexity
- Rent exponent range : $0 \le P \le 1$
 - Regular arch. (RAM) : P = 0.5
 - □ Complex arch. (VLSI circuits) : *P* = 0.75
 - Random logic : P = 1
 - Long chain of logic : P = 0

Rent's Rule

- T: Terminals per partition
- C : Cells per partition
 - □ *T*/*C* Terminals per cell
 - $\Delta T = (T/C) \Delta C$
 - Small ΔT , ΔC
 - dT=(T/C) dC
 - Results in T=AC


- Placement optimization level
 - □ *T*/*C* Terminals per cell

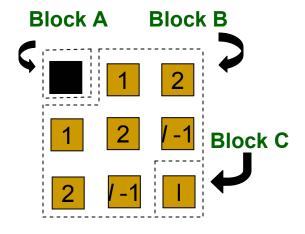
- Δ*T*=P(*T*/*C*) ΔC
- Small ΔT , ΔC
 - *dT*=P(*T*/*C*) *dC*
- Results in T=AC^P

Rent's Rule Extraction

- Partitioning
- Coarse placement
- Log-Log plot of external terminals vs. avg. no. of cells
- Rent exponent: slope of the regression line

 $\log(T) = \log(A) + P\log(K)$

Donath WL Estimation Method


- Hierarchical estimation
 - Partition into 4 sub-circuits.
 - At each level of hierarchy,
 - n_h: Number of interconnections
 - L_h: Average length of interconnections
 - Partitioning satisfies the Rent's rule.
- Drawback:
 - Ignores IP Blocks

Davis WL Estimation Method

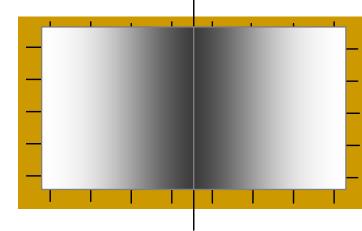
- Derivation of wirelength distribution
- Recursively applying Rent's rule
 - Stochastic WL distribution of a single gate
 - Remove it from the system
 - Repeat process for other gates
 - Superimpose WL distributions
- Drawbacks
 - Complex equations
 - Ignores IP Blocks

Non-Uniform Probability Distribution

Why Overestimate in Donath Method?

- Uniform probability distribution
- Optimal placement behavior
 - Keep connected cells closer to each other
 - More short wires than long wires
- Solution: Non-uniform probability distribution
 - Advantage: Accurate estimation
 - Disadvantage: Complex equations

Non-Uniform Probability Distribution


Donath hierarchical scheme

- Treat each level of hierarchy independently
- Uniform probability distribution for terminals
- Optimal placement behavior
 - More terminals at the border

Define:

• q(I): Occupying probability

$$q'(l) \approx l^{-(4-2P)}$$

Non-Uniform Probability Distribution

- Conservation of terminals
 - Internal terminals
 - External terminals

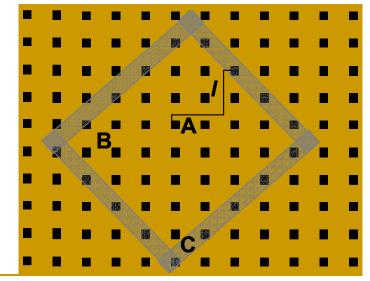
$$T_{A \to C} = T_{AB} + T_{BC} - T_B - T_{ABC}$$

Applying Rent's rule

$$T_{A \to C} = t \left[\left(1 + C_B \right)^P + \left(C_B + C_C \right)^P - C_B^P - \left(1 + C_B + C_C \right)^P \right]$$

 $n_{A \to C} = \alpha T_{A \to C}$

Non-Uniform Probability Distribution


• Number of terminals in C_C , C_B : $C_B = \sum_{l=1}^{l-1} 4l = 2l(l-1)$, $C_C = 4l$

$$n(l) = \alpha t \left[(1 + 2l(l-1))^{P} + (2l(l-1) + 4l)^{P} - (2l(l-1))^{P} - (1 + 2l(l-1) + 4l)^{P} \right]$$

$$q(l) = \frac{1}{2l} \left[\left(1 + 2l(l-1) \right)^{P} + \left(2l(l-1) + 4l \right)^{P} - \left(2l(l-1) \right)^{P} - \left(1 + 2l(l-1) + 4l \right)^{P} \right]$$

$$q'(l) \approx P(1-P)2^{-(1-P)}l^{-(4-2P)}$$

• For
$$l >> 1$$
: $q'(l) \approx l^{-(4-2P)}$

Stroobandt WL Estimation Method

- Modification of Donath method
 - Non-uniform probability distribution
- Interconnection length distribution
 - Structural distribution
 - Occupying probability
- More accurate results than Donath

Cheng WL Estimation

Considering IP Block Effect

- Flat WL estimation approach
- Total wirelength
 - Redistribution
 - Detour
 - Based on geometrical characteristics
- Provide guidelines for revising floorplanning/global placement before detailed placement and routing

Taraneh WL Estimation

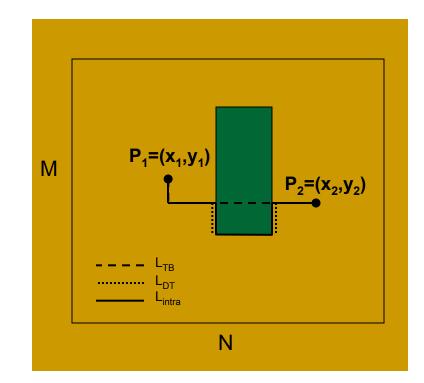
Considering IP Block Effect

- Hierarchical approach
 - Consider complexity of circuit using Rent exponent
 - Consider geometrical characteristics
- Deploy effect of different placement alg. in Rent exponent extraction
- Good for large-scale circuits

Methodology

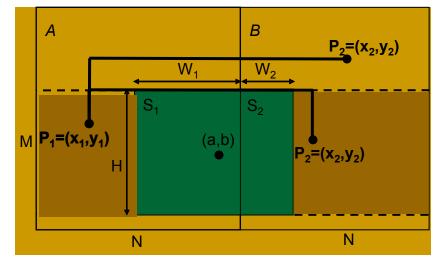
- Physically partitioning into 4 sub-circuits
- Continue till no. of cells $\leq \beta$
- At each level of hierarchy
 - n_h: Avg. no. of interconnections
 - L_h: Average length of interconnections

Total wirelength:


$$L_{tot} = \sum_{h=0}^{H} n_h L_h$$

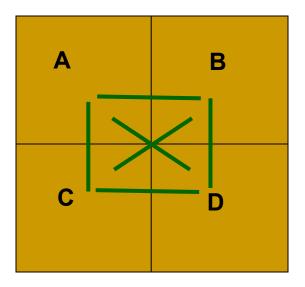
Average Length of Interconnection

- *L_{TB}* : WL, transparent blockage
- L_{DT}^{v} : Vertical detour
- *L^h_{DT}* : Horizontal detour
- Average WL


$$\overline{L}_{intra} = \overline{L}_{TB} + \overline{L}_{DT}^{h} + \overline{L}_{DT}^{v}$$

Average Length of Interconnection

- Horizontally, vertically, diagonally adjacent bins
 - Transparent block
 - Horizontal detour
 - Vertical detour


- Detour happens if two terminals are on different sides of IP Block
 - Probabilistic nature

Average Estimated WL per Level

$$\overline{L}_{\text{inter},l} = \frac{1}{6} \begin{pmatrix} \delta \left(L_{\text{inter}}^{h}(A,B) + L_{\text{inter}}^{h}(C,D) + L_{\text{inter}}^{v}(A,C) + L_{\text{inter}}^{h}(B,D) \right) \\ + \left(1 - \delta \right) \left(L_{\text{inter}}^{d}(A,D) + L_{\text{inter}}^{d}(B,C) \right) \end{pmatrix}$$

 δ captures optimization behavior of placement algorithms

25

Invited Talk, SLIP Workshop March 17, 2007

Open Research Problems

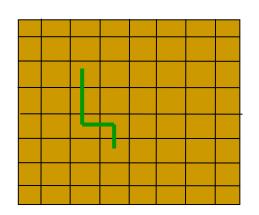
- Study the effect of IP blocks on Rent exponent
- Considering the effect of congestion around IP blocks and slivers
- Extending WL estimation for timing driven placement methods

Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion

Routing Congestion Prediction

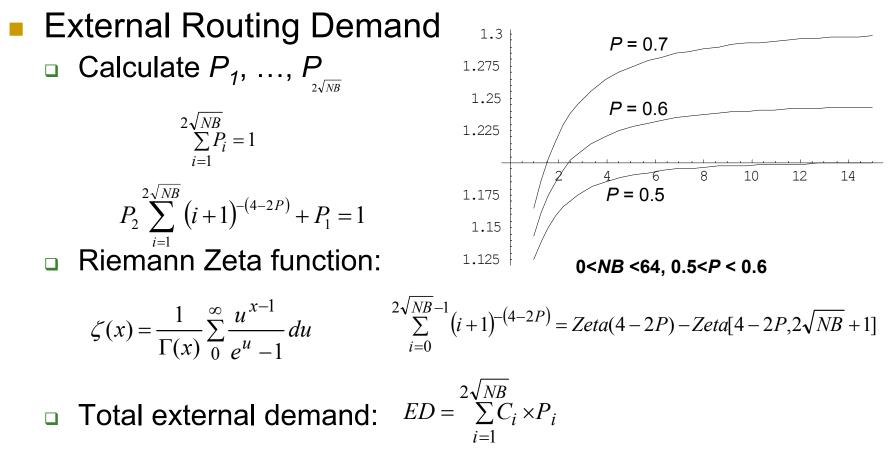
- Several post-placement algorithms presented to analyze congestion before routing.
- Use routing estimation model to predict routing congestion
- Derive the mathematical equations to estimate the congestion using a normal distribution approximation
- Use a probabilistic approach to estimate the congestion


Concurrent Congestion and Wirelength Estimation

- High-utilization benchmarks
 - Congestion is very likely
 - Detour b/c of congestion
- WL estimation needs congestion map
 - Modeling congested areas as artificial IP blocks
- Regional congestion estimation
 - Needs wirelength estimation for internal routing demand
- Concurrent congestion & wirelength estimation
 - Hierarchical bottom-up approach

Regional Congestion Estimation

- Routing demand: D(r) = ID(r) + ED(r)
 - Internal routing demand ID(r)
 - External routing demand ED(r)
- Internal routing demand
 - Equal to WL


Regional Congestion Estimation

External Routing Demand

The probability of occurring a wire of length *l*, *P_l* = *l*^{-(4-2P)}
If *NB* = # of bins \$\sum_{i=2}^{2\sqrt{NB}} P_i + P_1 = 1\$
And, we have \$\sum_{i=1}^{p_{i+1}} = \frac{(i+1)^{-(4-2P)}}{(i)^{-(4-2P)}}\$
Calculate *P₁*, ..., *P_{2\NB}*

Regional Congestion Estimation

Invited Talk, SLIP Workshop March 17, 2007

Outline

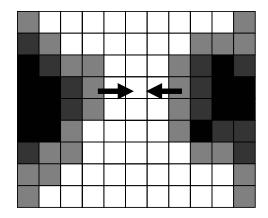
- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion

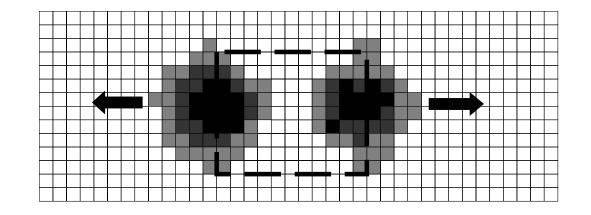
Concurrent WL and Cong. Prediction

- Bottom-up hierarchical analysis
- Congestion estimation
 - Analyze external routing demand
 - Analyze internal routing demand using WL of previous level
 - Obtain congestion map of this level
- WL Estimation
 - Obtain avg. no. of interconnect per level
 - Analyze avg. length of interconnect
 - Model congested areas (known from previous level) as artificial IP blocks

Open Research Problems

- Considering the effect of vias in the estimation
- Extending congestion estimation for 3D placement
- Extending the concurrent estimation methods for congestion and wirelength on the other estimation methods


Outline

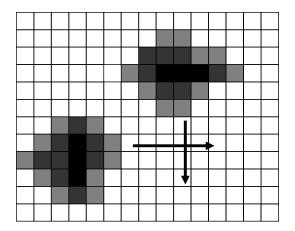

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion

Density Utilization Alleviation

 Need a global view of density (congestion) map

Local density alleviation

Global density alleviation


37

Density Utilization Alleviation

- Flow algorithms
 - Local view
 - Ignore WL optimization

Solution

- White space allocation
- Linear/quadratic
- Greedy

The interfering flow in the crossing of two arrows

Density Utilization Alleviation

Cell Redistribution

- □ Form working area round highly-congested bins
- Redistribute cells in working (by using min-cut partitioning)

Cell Migration

- Move cells out of highly-congested bins
- Accept move if reduces congestion
- Different Criteria to accept a move

Open Research Problems

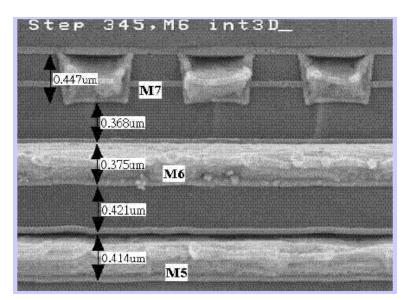
- Incorporating the issues like
 - Thermal placement and hot spot distribution in congestion alleviation algorithms.
- Considering the white space needed around the big IP blocks in the density alleviation algorithms
 - Guarantee routability in later phases.

4(

Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion



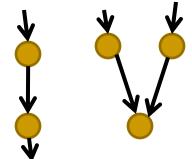

Statistical Timing Analysis

- Key parameters in device variations
 - Length L,
 - Threshold voltage V_t
 - □ Oxide thickness *t*_{ox}
 - Process parameter variations normally distributed as random variables
- Gate delay, *d*, will have a probability distribution function: Gaussian distribution with parameters μ and σ.

Variation Sources

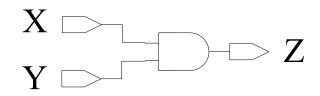
tox

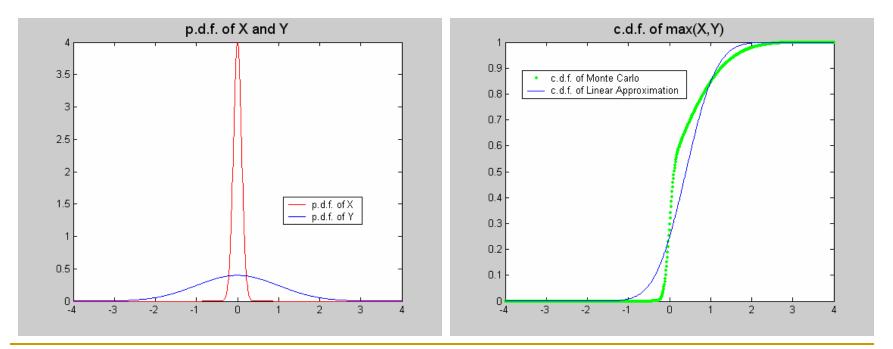

Wire Thickness Target=0.375um


• Figures are courtesy of IBM, Intel and TSMC

Gate Delay Distribution

Gate Delay: *almost* worst case delay




- Delay distribution of a circuit using two operators: Max and Sum
- Re-convergent paths produce correlations between delay
- No set of distributions which is closed under both sum and max
- Quantization can be applied to work with discrete distributions with a polynomial associated:

$$G_d(x) = \sum_{i=1} P_i x^{d_i}$$

MAX operation: inherently non-linear

Timing Model

Canonical timing model for gate/wire delay

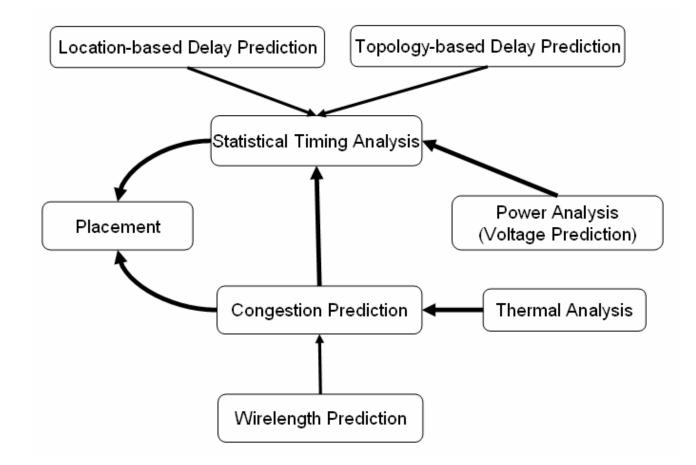
- Assumption: Gate/wire delay is linearly dependent on the variation sources
- Problem: Non-linear dependency of delay on process parameters
- Linear MAX approximation for circuit delay
 Problem: Significant error could occur in some cases

Open Problems

- Obtain a probabilistic model nets with reconvergent fan-outs
 - Half perimeter approximation no longer accurate because of the branches in a net
- Analyze delay distribution for nets during placement.
- Incorporating delay distribution into placement algorithm in timing driven placement

Outline

- Motivation
- WL prediction
 - Individual net
 - Total interconnect length
- Congestion prediction
- Concurrent wirelength and congestion prediction
- Density utilization alleviation
- Statistical timing analysis
- Integrated congestion and delay prediction
- Conclusion



Integrated Cong. & Delay Estimation

- Hierarchical CAD flows to consider wirelength, congestion, thermal issues and power early in design flow
 - Pure wirelength minimization without congestion estimation methods may lead to un-routable designs
 - Wirelength minimization along with congestion removal but ignoring thermal issues may lead to designs with several hot-spots.
- All these predictions should be highly integrated
 - Goal is to degrade the harmful side effects of optimizing each parameter individually

Integrated Cong. & Delay Estimation

Conclusion

- Integrated prediction methods
- WL estimation
 - Individual net length
 - Total interconnect length
- Congestion Estimation
 - Pre-Placement
 - Post-Placement
- Timing Analysis
- Integrated Estimation of WL, Congestion, and Delay

Thank You!

52